£ FILE COPY

l=
=

— RADC-TR-79-206

Final Technical Report
IL\‘ August 1979 8
<A
e
—> TOPS 20 NSW
T,

Massachusetts Computer Associates

Sponsored by

Defense Advanced Research Projects Agency (DoD)
ARPA Order No. 3686

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of :
the authors and should not be interpreted as necessarily representing

the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the U.S. Government.

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command

Griffiss Air Force Base, New York 1344I

Z @
Qv

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

This report has been reviewed by the RADC Information Office (0OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign
nations.

RADC-TR-79-206 has been reviewed and is approved for publication.

APPROVED: p.»[?cz J (e %//’r«'n}ﬁ(,

RICHARD A. ROBINSON
Project Engineer

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (ISCP), Griffiss AFB NY 13441, This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

TR

g

AT s oy 2 A S| VT B e

o Ly S

Eraitiony

P SRLE
LS

D v\g-éu e

TOPS 20 NSW

Charles A. Muntz

Contractor: Massachusetts Computer Associates
Contract Number: F30602~78-C-0087
Effective Date of Contract: 1 October 1977

Contract Expiration Date:

6 December 1978

Short Title of Work: TOPS 20 NSW
Program Code Number: 8P10

Period of Work Covered:

Principal Investigator:
Phone:

Project Engineer:
Phone:

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced
Research Projects Agency of the Department of Defense
and was monitored by Richard A. Robinson (ISCP),
Griffiss AFB NY 13441 under Contract F30602-78-C-0087.

Oct 77 - Dec 78

Charles Muntz
617 245-9540

Richard A. Robinson
315 330-7746

mm”’*&;':h A

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE anrcrAD INSTRUCTIONS
iz GOVY ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER
19] ravcfrn-70-2p6 > 4

0 Charles A'/‘mntz {,/ 6;‘{‘%2‘78‘(:76,”87“
& = A freden-2. 90,

——
YITLE (and Subtitlie) Vd 7

— =4
ﬂ:l‘OPG 20 NSW Final Technical Repept,'
o A Sta N & 0“2 -; conbevad®. -
— — & S— 77 e ='

——

L ' L} CADD-7901-0511 ’
; - - TONT e]

S -

‘rbtn'onnmc QRGANIZATION NAME AND ADDRESS AOPROGRAM TLEMEN T SRGIGCT . LALL

AREA & WORK UNITY BE RS
Massachusetts Computer Associates P g
26 Princess Street N A 7 o é 253 \ /7 j_
Wakefield MA 01880 e T -»/Zi______(_.
Jaz

11 CONTYROLLING OFFICE NAME AND ADDRESS REBORT DAlS <,
Defense Advanced Resecarch Projects Agency @ Aug D7 9 =

1400 Wilson Blvd

15 NUMBER OFSAGES

Arlington VA 22209 89
r-'d MON TORING AGENCY NAME & ADDRESS it ditferent from Controlling Othce) 18, SECURITY CLASS

Rome Air Development Center (ISCP) UNCLASSIFIED
Griffiss AFB NY 13441

‘ot this report

T84 DECLASSIFICATION DOWNGRADING

SCHEDULE
N/A .
16 DIS‘R'BUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.
YT
\ <N «
’ T
{ o —————
1T DISTRIBLTION STATEMENT (of the abstract entered in Block 20, it different from Repor) Sy al
Same
18 SUPPLEMENTARY NOTES il e
RADC Project Engineer: Richard A. Robinson (ISCP)
Y59 ey WORDS / “ontinue on reverse side il necessary and fdentify by block number) R i * 1
Sof tware Systems
Sof tware Engineering
Computer Networks
200 A ACT (Continue on raverse side If necesaary and identify by block number) R o --—.-ﬁ

|

he National Sortware Works (NSW) is a distributed software system resident
on the ARPANET. Tt is intended to support the development, use, maintenance,
and storage of programs and data on which the programs operate. It is princi=-
pally aimed at the development of software systems and at providing software
tools which can be used to support the software development activity throughout

{ its life cycle.
Y DD T, 1473 UNCLASSTFIED
S SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

s s o i

Introduction .
History of NSw Project .
NSw Goals
NSW Architecture .
Tool Kit .
NSw Monitor and rile Syste
Pnases of NSW Development .
Structural Design and Feasibility Demonstration
Letailed Component Design .
Prototype Implementation.
Keliability and Performance Improvement.
Current Status .

Wwwww NN -

Components
Core System Components .
Works Manager .
Checkpointer
Works Manager Operator .
TENEX/TOPS-20 TBH Components

wn -

Foreman .
File Package .
IBM 360 TBH Components .

w N -

Foreman .
File Package .

EWN =

TABLE OF CONTENTS

Batch Job Package .

Foreman .
File Package .
Front End .
NSW Performance .

wn -

. e . LI o . . . v L .
NMEELSLSZWUWLWWWWMNOLNDNNN = = -

wrRPrLPDRRDNRRPDRDRDPDNRRNDDNRD D -

< 2 . v " " »
- eacionis - " T . oy "
et g 3 b e gl A o ¢ " 5
ilpsit) U T o B L e T T N A e et
ke Siaienn . i . £ AN - PO P ¥ - h d I) (v TSSO

MULTICS TBH Components .

Future Uirections .

Overview .
Components .
Core System .
Works Manager .
Works Manager Operator .
TENEX/TOPS-20 TBH

N -

-
)
4
#
3

T

Foreman .
File Package .
IBM 360 TBH

wn =

P
RPN =

foreman .
File Package .

.

Batch Job Package .

MULTICS TBH
Front End .
Functional Testing

NMEWWWWWNRNNNND = = =

S E E E e P E EEEEEEEF S D FLWULWWUWULWLWWLWULWURWWWWWWWWWWWR NN NN NN NN -

@ ® & 8 e e 9 e e 8 & & e 6 @ ® ° 8 e e 8 8 ° " 8 s * & s e ® &+ s e ® 8 e ® ° & e s 8 8 ° 2 4 e s

e B S W e AT
wn NN o

N g i

o~~~ CCw

e o 8 4 e
*® o s e e
e e s s

- .

e o o o
e o o o
e« o o
e o o o
e o o o
e o o o
e o o o
e o o o
e o o o
e o o o
o o o o
e o o o
e o o o
e o o
o o o o
e o o o

R ———————————————E R S ———

“.3.1 History - 2 ““
8.3.2 Functional tests CONEEDE o e e e aite e 'a a a gl e e e B
4233
u.4

Functional tests - methodology « +« « « « « « o« o « « » U8
MESEO T L gNEDUS " s ol e e el e e e SlAe e igtign gt B0
Bibliosraphy = - . . o 51
GlOSSArY . v < s o e
Appendices A, B, and C

:QI.....Q..‘OO'...'.'SS

T

i

TR E——" .

3 g
: i
‘, [

£
¥
&
£
!

—

1. Introduction

The National Software Works (NSw) 1s a significant new step
in the development of distributed processing systems ang computer
networks. NSw is an ambitious project to link a set of
geographically distributed and diverse hosts with an operating system
which appears as a single entity to a prospective user,

The National Software Works is being developed in response to
a growing concern over the high cost of software. The Air Force has
estimated that in FY7Z 1t spent between $1 billion and $1.5 dillion
on software, about three times the annual expenditure on computer
hardware. The Air Force has further estimatea that by 1985 software
expenditures will be over 90% ol total computer system costs.

Since the early days of computing, in fact, the cost and
complexity of developing and maintaining software have been
substantial obstacles to the efficient and etfective use of
computers. To breach this barrier, both industry and government have
committed vast resources for the development of tools =-- automateaq
aids for the implementors of software ana the manavers of software
implementation projects. These tools include compilers, eaitors,

debugrers, design systems, test management tools, languayge analyzers,
etce.

The difficulty i1s not the existence of suitable tools for a
given programming task; it is the availability of the tools. 1ihe
notion of software portabdbility, often proposed as the solution for
the problem of providing programming tools in some environment, has
proven to be a will-o'-the-wisp which the industry has vainly pursued
for the past twenty years.

The success of the Arpanet in providing programmers
economical access to geographically dispersed computers provided the
foundation on which the NSW concept was built. Instead of moving the
software from host to host, let the programmer (and manager) use each
software tool on whatever host it already occupies. To taxe a
specific example, the Navy requires a programming support environment
for the UYK-20 minicomputer. There currently exist cross-assemblers
and compilers for the UYK-20 on IBM 3060 hardware. On TENEX there 1s
a UYK=-20 emulator and debugger. MULTICS has the QEDX editor. All
three of these hos® computers are connected by the Arpanet. Solution

-- let the programmer use these existing tools to develop UYA=£0Q
software.

ACCESSION for

NTIS Wiite Section

(LAY Buff Section O
UNANNOUNCTD O
JUSTIFICATION ...

BY

DISTRIBUTION/AVAILABLITY C00ES |
ist. AVAIL. andZor SPECIAL)

4 ,

PTG bl e

That solution sounds plausible, but it ignores some serious
practical considerations,

0 You need an account on each host. This involves the
allocation of funding, drawing up contracts, etc.

0 The operating syster on each host is different, so you must
learn different login procedures, command languages,
interrupt characters, file naming conventions, etc. Further
you must not confuse each system's conventions as you move
from tool to tool.

0 Files output from one tool (say QEDX on MULTICS) are to be
input to another tool (say CMSZM on IBM 360), This involves
at least network transmission and usually file reformatting.
To appreciate the magnitude of this problem one should try
to use FTP (Arpanet File Transfer Protocol) to move a GEDX
output file -- a sequential file of 9 bit ASCII characters
in 306 bit words == to an IBM 300 to be a CMSZM input file --
a blocked file of 80 EBCDIC character records in 32 bit
words.

Ihese and similar problems will be familiar to anyone who has used
several different systems.

The purpose of NSW is to make this solution (of providing
programmers access to tools on different hosts) a practical reality.
The NSW user should not have to know about 0S/360, TENEX, and MULTICS
with their differing file systems, login procedures, system commands,
etc.; Knowledge of how to use the individual tools which are needed
for the job should suffice. He should not have to worry about
reformatting and moving files from a 300 to a TENEX; file
transmission should be completely transparent. The user should not
have to worry about obtaining accounts on many different machines,
but instead should have a single NSW account.

Thus, the National Software Works is to provide programmers
with a

0 Unified tool kit - distributed over many hosts, and a

0 Single monitor with
« uniform command language,
« Rlobal file system,
« Single access control, accounting, and auditing mechanism.

2. History of NSW Project

2.1 NSW Goals

As originally conceived, NSWH was to provide the
above-described facility in the context of certain specific external
goals., The first such goal was large scale. Contemporary operating
systems support tens of concurrent users. NOSW was to support many
more users, possibly as many as one thousand. The catalogue alone of
the file system for that many users could easily fill a 3330 disk
pack. The table space required for keeping track of one thousand
users and the software tools that they are using could easily exceec
the memory of a mediur. size lrHta.

The second goal was high reliability. If there are one
thousand online users, then a two hour system failure costs one
man-year of work. The National Software Works =-- particularly its
monitor and file system -- must degrade gracefully. Failure of a
single component -- e.g., a TENEX system on which tools are running
-- must only reduce system capacity, not destroy it. Further, only
those users actually using a failed component should be affected by
its failure.

The third goal was support of project management. NOw was to
provide managers of software projects with a collection of programs,
called management tools, which they can use to monitor and control
project activities. The underlying assumption here is that a
manager's ability to insure that eacn programmer's efforts contribute
most effectively to overall project goals can be greatly enhanced by
automating routine management tasks. Furthermore, it is assumed tnat
a pgood environment for this automation is the system which supports
the project programming activities because it represents an effective
point for monitoring and controlling those activities.

The fourth goal of NSW was practicality. KSW was not to bde
a "blue sky" system, whose implementation required unrealistic
assumptions about its environment. In particular, practicality meant:

0o Minimum modifications to existing operating systems on
Arpanet hosts. Minimum was, in fact, to be construed as
none. It was possible to add privileged (i.e., non-user)
code to the existing systems, but the solution to the
problem should not depend on rewriting the kernel of any
existing operating system.

o Minimum modifications to existing tools. Here, minimum no
longer meant none. It was possible to require some change
to a tool as part of the process of NSw installation, but
such changes should be small scale and contained.

o Maximum generality. Any solution which permits the easy
installation of existing tools must also allow the easy
construction and installation of new tools.

bl e

0 No experimental hardware. 1This requirement meant
hardware-oriented-approaches to reliability - e.g.
PLURIBUS = cannot be used. The NSw monitor and file system
are to run on already avallable Arpanet hosts,

J.¢ NSW Architecture

In this section, we summarize the NSW design, indicat
effect the NSW goals had on the system architecture. Wwe can
the NSw problem into two parts:

o The development and implementation of methodology
excising tools from their current environments and
interfacing them with the new NSw monitor.

A B b AT

system for the Arpanet.

In the next two subsections we examine each of these problems
and describe the components of NSW which provide solutions to
technical difficulties involved with each part.

£l 2.2.1 Tool Kit

We first have the task of excising tools from their ¢
operating environment and embedding them in the new one. In
context of the goals of NSw, we will discuss the technical is
which must be solved in order to provide the requisite tool
installation methodology.

By its very definition, NSW is a distributed system,

I processes run on different Arpanet hosts. The monitor must r
i least one Arpanet host., There must be some form of inter-hos
£ inter-process communication. There are low level Arpanet pro
‘ for moving bits from host to host, and there are also several
level protocols for moving files and for terminal communicati
of these protocols, however, is oriented toward the kind of

though NSW is being implemented on the Arpanet, we want to ke
i independent as possible of the underlying milieu. Network te
[{ 18 evolving, and we wish to be able to realize the NSW archit
E 3 on tomorrows's network's as well. Hence, the first technical
problem to be solved is the definition and implementation of
appropriate inter-host inter-process communication protocol.
protocol developed for NSw is called MSG.

that new
"

ing what
factor

for

o The design and construction of a unified monitor and file

in turn
the

urrent
the
sues

Tool

un on at
t

tocols
higher
on, None

inter-process communication which NSW requires. Moreover, even

ep it as
chnology
ecture

an
The

o

The user of a tool has a variety of mechanisms for communicating
with the tool. The user's terminal must be interfaced to the system
and its peculiarities handled -- for example, the right amount of
padding added after a carriage return. Control characters which
happen to be meaningful to the local host must be intercepted before
they reach the local executive. In order to allow uniform access to
all the tools in NSW, running on many different machines, we must
define a standard set of control functions and implement a System
component which interfaces the user to every tool. The problem of
standardizing control tunctions and insulating the user from the
vagaries of the different operating systems is handlec by an W3Ww
component called the Front knd.

A tool running on some machine makes system calls requesting
resources -- primarily file access. Since access to NSW system
resources 1s to be controlled, accounted for, and audited by the HoW
monitor, such requests must be diverted from the local system and
instead referred to that monitor. In addition, the tool expects to
have a communication link with the user, and this link in NSW is via
MSG to the fFront End. So, without modifying the operating system, we
must divert the tool's communications with the user and the tool's
requests for local resources. The NSa component which solves this
problem is called the Foreman,

Finally, we expect that the output of one tool will be used
as input to another tool. Unfortunately, if the first tool is a
MULTICS editor and the second an IBM 360 compiler, this operation
involves character translation (ASCII to EBCDIC), file reformatting
(sequential file to blocked, recorded file), and file movement
(across the Arpanet). To handle such file transformations and
movements there is an NSWw component called the File Package.

It is worth noting at this point that all of the above
components are distributed. Every host in NSW has an MSG server
process. Every site to which a user is connected has a Front knd.
Every tool bearing host has a Foreman. Lvery host on which hSW files
are stored has a File Package. It is also worth noting that
implementation details of these components vary from host to host.

A MULTICS Foreman will be vastly different from an IBM 360 Foreman.
Functional specifications for these components are fixecd “roughout
NSw, but implementation and optimization decisions are left free.

Before proceeding to the NSw monitor, let us summarize the
technical problems and the resulting components which provide the
unified tool kit methodology.

o Inter-host inter-process communication MG

o User interface Front End

o Diversion of communication with local
operating system Foreman

o File transformation and movement t'ile Package

«.2.2 NSW Monitor and File System

The design of the NSW Monitor - callec the Works Manager -
was probably more affected than any other component by the goals of
NSw. Functionally it is not different from any other conventional
access-checking, resource-granting monitor., UStructurally, however,
1t 1s significantly different.

The goals of providing both large scale and reliability on
conventional hardware led to the approach of distributing the Works
Manager and file system. If there are many instances of the NSW
monitor on many different hosts, then failure of a host is not
catastrophic. Unfortunately, distribution runs counter to the
problem-required logical unity of the monitor and file system. If a
user inserts a file into the file system using one tool and one
instance of the file system, and then requests the same file using a
different tool and a different instance of the file system, the two
instances of the file system must share a common file catalogue for
the system to behave properly. Similarly, all instances of the
monitor must share an access rights data base for proper validation
of user requests to run tools.

A major technical problem in designing the wWworks Manager was
that of creating synchronized duplicate data bases. The process
Structure of the Works Manager was designed so that such synchroni-
zation could be accomplished. Further, that process structure can
handle the intrinsic distribution of NSW. Communication between the
Works Manager and other NSW components - Front End, Foreman, and File
Package - 1s via MSG, a relatively slow link.

2.3 Phases of NSW Development

The design and implementation of the National Software Works
has proceeded in four slightly overlapping phases

0 Structural design and feasibility demonstration
o Detailed component design

o Prototype implementation

o Reliability and performance improvement

In the following subsections we describe these phases in more detail.

.

10

2.3.1 Structural Design and Feasibility Demonstration

The first phase of NSW development began in July, 1974 and
concluded in November, 1975. During this period, the basic
architecture of NSw (described in Section 2.2) was established.
Further, relatively ad hoc implementations of major components were
made. These components were integrated into a system which was
bl demonstrated to ARPA and Air Force personnel at Gunter AFB in
it November, 1975. This demonstration exhibited (functionally) various
{ system functions, the user of batch tools on the IBM 360 and
Burroughs B4700, the use of interactive tools on TENEX, transparent
file motion and translation, and a primitive set of project
management functions.

This demonstration confirmed that the expected SW facilities
could be implemented and that transparent use of a distributed tool
kit was feasible. The NSW System, however, was inefficient and
fragile. Further, many of the ad hoc implementations had design
weaknesses which limited their general application to a sufficiently
broad range of hosts and capabilities. For these reasons, an effort
was begun to produce adequate component designs.

2.3.2 Detailed Component Design

This second phase of NSW development was begun in June, 1975
with the initial MSG design document. Specifications were developed
for Tool Bearing Host components - MSG, Foreman, and File Package.

All of these specification documents were completed by March, 19Y76.
(They have all been revised since then, but the original specifications
are still substantially correct.)

: During the same period, the external specification of the
Works Manager was also made. Again, although this specification has
subsequently been revised, it is still substantially correct. The
remaining portions of the core of NSW - i.e., the batch tool facility:
Works Manager Operator, Interactive batch Specifier, and Interface
Protocol - were designed during phase one, and those designs were

] retained until phase four (see below).

The remaining major NSW component, the Front End was the
sub ject of several design efforts. Three incomplete specification
documents were produced but none of these was wholly satisfactory.
Nevertheless, sufficient design to allow implementation of a
functionally correct Front End was accomplished. Completion of a
general specification for the Front End is one of the tasks remaining
to be accomplished. :

2.3.3 Prototype Implementation

As specification documents were completed, various
contractors began implementation of the NSW components on the initial
set of hosts - TENEX, MULTICS, and IBM 360, These efforts commenced
in January, 1976. Implementation on TENEX proceeded more quickly
than the efforts on the other hosts - primarily because the NSw
system designers were also the TENEX implementors. By October, 1970
piototype implementations which conformed to the published
specifications had been made for all TENEX ToH components. In
addition, all components of the core system were availlable on TENcA.

Implementation of IBH components on MULTICS and IBM 300
proceeded more slowly; however, initial implementations of M5G
components on both of these hosts were completed by the end of 1976,
By November, 1976 sufficient progress had been made on implementation
of a File Package and Foreman on MULTICS that it was possible to
demonstrate an interactive tool running on MULTICS., Progress on
implementation of 360 TBH components reached a similar position in
September, 1977.

Also during this phase, a TENEX Front End which functionally
supported the Works Manager and Foreman according to the appropriate
specifications was implemented.

An NSW system containing prototype implementations according
to the specifications of the core system, TENEX TUH components, TENEX
Front knd, batch IBM 3060 tools, as well as a rudimentary MULTICS
interactive tool was demonstrated to Air Force and AKPA personnel in
November, 1976. At the same time, a demonstration of MSG components
on all three hosts was also given,

2.3.4 Reliability and Performance Improvement

Even though implementation of components on MULTICS and IBM 300
was lagging, implementation of the core system, TENEX THH components,
and TENEX Front End had proceeded to the point that the issues of
reliability and performance assumed major importance. The system
exhibited sufficient functional capability that it could clearly
support use by proprammers if it were sufficiently robust and
responsive.

The first task attacked was to provide robustness. Work had
begun on a full-scale NSW reliability plan in 1975, The detailed
plan was released in January, 1977. Since it was clear that
implementation of the full plan was a major undertaking, a less
ambitious interim reliability plan which ensured against loss of a
user's files was begun in mid-1976. This plan was also released in
January, 1977. Uy June, 1977 the core system, TENEXN Foreman, and
TENEX Front End had been modified to incorporate the features of that
interim plan. In addition, both the MULTICS and IBM 300 Foreman

12

L (only partially implemented) were altered to conform externally to
4 the scenarios specified by the interim reliability plan. A system
exhibiting the new scenarios was released for use in June, 14%77.

Performance of WNSw had been slow from the initial
implementation. The reasons for slow response were many:

0 1interaction between components was by a thin wire (M3G and
the Arpanet).

0 NSW components (which constitute an operating system)
nevertheless were executed as user processes under the local
host operating system.

o Component implementation had been oriented towards ease of
debugging and other concerns of prototype systems rather
than towards the performance expected of a production
system.

In 1977, efforts to improve NSW performance were begun,

The first effort was the development of a performance
measuring package for TENEA MSG. HKesults of the first set of
measurements were reported in April, 1977. Some perforumance
improvements were sugpested by the initial measurements, but the most
obvious suggestion was that more sophisticated measuring packapes i
were needed. Several such packages were begun to perform various
kinds of measurements on TENEX components. All of these packages 1
were complete by February, 1978. By May, 1978, all TENEX components
had been instrumented and measurements of page use, CPU time, elapsed
time, use of JSYS (TENEX system commands), etc. had been taken under
a variety of system load conditions and on several different IENEX
hosts. Efforts are currently under way to implement the performance
improvements suggested by these measurements. Performance
improvements have already been made to several components. Kesults
of these improvements are described in section 3.2 below.

PP -

Concurrent with the effort to improve iSw reliability and
performance, an effort to make NSA4 a more packaped product were
begun. Regression tests for the externally available NSW user system
were developed and applied to each system release. A user's manual
for the system was published. Documentation of the core system was
produced. Finally, a draft configuration management plan was
developed.

Phase four of NSW development is still continuing. Efforts
to improve performance of TENEX components are substantially
complete. Certain features of the full scale reliability plan have
also been implemented, and phase four should be complete by mid 1979Y.
Phase five, development of a production NSW system, is underway. The
efforts proposed for phase five are described in section 4 below.

:
:
<
‘
|
\

13

3. Current Status
3.1 Overview

The NSWw system currently available to users was released in
November, 1978. It has the following characteristics:

o Twenty interactive TENEX tools; five of these tools are
installed in TOPS20, but some problems remain as compared to
the TENEX installations.

o Ten interactive MULTICS tools, some of which are still being
tested.

o OUne interactive IBM 360 tool, and nine IBM 300 batch tools.
o Basic set of system commands.

o User documentation and support.

o Rudimentary set of management procedures.
o Improved operability.
o Configuration of system includes following hosts: |

ISIC

SRI-KA

CCN
RADC-TOPS20
RADC-MULTICS

Functionally, the current NSW system is minimally adequate. It has

a reasonable collection of tools, but many of these tools have not
been adequately tested. The minimal set of user commands is
available and tested, but many needed user features are lacking - e.g.
command macros, '*' in file commands, 1/0 devices, Arpanet mail, etc.
Performance has been improved significantly. The documentation of
system components has been improved, but much needs to be done.

TENEX and TOPS20 are available as Works Manager or Tool Bearing Hosts
according to specification, but TOPS20 tool encapsulation is
currently less satisfactory than TENEX. Additional encapsulated
tools can be installed in either environment to increase NSw
capacity. Batch tools are available on the CCN IBM 360/91, and more
can be installed as needed. A major overhaul of the entire batch
system has made it more consistent with the rest of NSW, more
flexible, powerful, operable and resilient. The IBM 360 Foreman
implements only one interactive tool, and a minimal set of specified
features. The MULTICS implementation has been improved enough to be
included in the user system with an expanded tool set, alt ough
problems persist - particularly in the Foreman implementation.

The current status of the individual component implementations
is presented in section 3, and planned improvements to the system
are presented in section 4.

14

3.2 Components

In the following subsections we give a description of the
current status of each NSW component.

3.2.1 Core System Components

The core system components - Works Manager, Checkpointer, and
Works Manager Operator - are substantially complete. The Works
Manager has been the ob ject of an extensive and successful effort to
improve its performance. The Checkpointer has had its functionality
enhanced, and been made more robust. The Works Manager Uperator has
been substantially rewritten to interface to the vsatch Job Package,
and to conform to the coding standards imposed on the Works Manager.

3.2.1.1 Works Manager

At present, the Works Manager consists of a number of identical
concurrent processes which implement the Works Manager procedures.
All such processes share two common data bases, the works Manager Table
data base and the NSW File Catalogue. In addition to these processes
there is a separate process, the Checkpointer, which makes periodic
backup copies of the data bases.

The Works Manager supports 36 different works Manager procedure
calls, which are available to other NSW processes. These procedures
are described in the Works Manager System/Subsystem Specification and
the Works Manager Program Maintenance Manual.

A substantial effort was invested in implementing the scenarios
described in the "Interim NSW Reliability Plan" (CA-7701-2111), These
scenarios are as close as possible to the final NSwW design which is
described in "NSW Reliability Plan" (CA-7701-1411)., The goal of
these scenarios was to guarantee a user that a system malfunction =--
other than catastrophic disk failure -- would cause few, if any, of
her/her files to be lost. This guarantee includes files stored in the
NSW file system as well as closed local files in a tool's workspace.
It was not a goal to provide continuity of service in the face of
individual component failure, nor was it a goal to eliminate
long (possibly endless) waits by the user in the event of message
delays or component failure (these desirable goals would be met
by implementing the complete reliability plan).

In order to guarantee that NSW file system files not be lost
(except under rare circumstances) it was necessary to preserve the
NSW file catalogue. It was presumed that these files themselves
are preserved by some mechanism on the file bearing host. Periodically
(currently at approximate twenty minute intervals) the WM file
catalogue is locked, the entire file catalogue is copied onto disk,
and then the lock is released. The WM also maintains a data base of
active users, active tools, etc., which is also copied onto disk
(using the same mechanism described above for the catalogue). The
Checkpointer, a new NSW component, was designed and implemented to
fulfill this function.

15

The twenty minute interval introduced a window during which a
file transaction may be lost if the WM host should crash, This
twenty minute interval is sufficient with respect to NSW Exec commands.
However, a tool might wait until termination to deliver any files;
in this case, many hours of work could be lost. In order to avoid
this problem, a mechanism was developed so that a Foreman could ensure
the preservation of the local tool workspace (LND) in the event of
either local host crash or the failure of other NSW components. The LND
contains any files being delivered by the Foreman on behalf of the tool.

The mechanism developed ensured that the LND is preserved until
after a file catalogue containing references to delivered files
has been checkpointed. The LND is only (intentionally) erased after
tool termination. Whenever a tool terminates normally, an additional
message (FM-GUARANTEE) is sent by the Checkpointer (the process
performing the file catalopue checkpoint) to every Foreman instance
which terminated since the last checkpoint. FEach Foreman instance
sets a timer and if the FM-GUARANTEE message is not receivea when the
timer goes off, the Foreman saves the LND.

The requirement for the Foreman is that it must be able to
maintain the LND is such a way that it is preserved over Foreman
host crashes. The Foreman must be able to explicitly invoke this
save-the-LND mechanism. This allows the Foreman to explicitly preserve
the tool's workspace should any difficulties arise during some scenario.

The AUTOLOGOUT scenario is initiated by a break in the
connection between the user's terminal and the Front End. All
running tools are forced to stop and initiate the save-the-LND mechanism
described above.

A mechanism was also implemented which allows the user to have
(some of) the saved files delivered to the NSW file system. This
mechanism is provided by the LNDSAVED and KRERUNTOOL sceanarios. Once
a Foreman has performed the save-the-LND mechanism, it informs the
WAorks Manager. The Works Manager maintains a record of such saved LNDs in
each user's node record. A message will be sent to the user at each
subsequent login until the user causes its deletion by using the KERUN
command (which invokes the RERUNTOOL scenario). The user will receive
messages abtout the saved LND until the user explicitly saves the files
(TERMINATE subcomumand) or deletes then (ABORT) subcommand). Currently,
these are the only two options of KERUN which are implemented; it has
been proposed that RERUN be expanded to allow the user to run a new
instance of the tool in the saved LND.

A major change was the introduction of the Works Manager Table
Facility as a performance enhancement. See Appendix A for details.

b it i ol

16

The Works Manager, which consists of approximately 25.7K
lines of BCPL code, is structured into a number of layers. At the
top level, WMMAIN waits for a procedure call message from another HSw
process, does initial decoding and validity checking of any such
message, then dispatches the message to the proper routine. The
works Manager Routines, WMRTNS, implement the 36 Works Manager
Procedures. At their disposal are a number of lower-level utility
packages and subsystems. The Works Manager Table Package, WMTPKG,
handles all interactions with Works Manager tables. It serves as an
interface to the Information Retrieval System, INFKIV, which manages
the NSW File Catalogue and the Works Manager Tables. All NSw
processes written in BCPL have available NSUPKG and BCPPKG. NSUPKG
contains a number of facilities to handle MSG messages, create and
record NSW fault descriptions, etc. BCPPKG provides basic utilities
to handle character strings, do searching anc sorting, and so forth.

As with other core system components and the TENEX/TOPSZ2V
File Package, the Works Manager is transportable between TENEX
and TOPS20 without modification. See Appendix C for details.

1

3.2.1.2 Checkpointer

The Checkpointer status mimics that of the Works Manager,
since it consists largely of the entire Works Manager utility
package, with a relatively small upper layer of code to implement
the specific Checkpointer procedures. Thus, like other core
system components, the Checkpointer is transportable between
TENEX and TOPS2U without modification (see Appendix C). The
performance improvements realized by the Works Manager table Facility
also apply to some Checkpointer procedures.

The Checkpointer has the following characteristics:

o Implements the FM-GUARANTEE call on the Foreman
required by the Interim Reliability Scenarios.

o Manages NSW file deletion. Files deleted
by the user are actually deleted by the Checkpointer
after a time interval, as required by the Interim
Reliability Plan.

0 Makes Checkpoint files of all Works Manager database
files at approximately twenty minute intervals.

o Is robust and flexible to about the same level as the
works Manager itself.

3.2.1.3 Works Manager Uperator

The modification/partial re-implementation of the Works Manager
Operator (WMO) to meet the revised Batch Job Package specification included
as Appendix B to this report is complete. The new version of WMO
was relased as a component of the candidate user NSW systew on
November 16, 1978. The one WMO procedure specified is supported.
this version has been extensively tested with the corresponding
version of the CCN/360 BJP released on the same date, and there are no
known outstanding deficiencies.

WMU shares a data base (the Job Queue File) with the
Interacive Batch Specifier (IBS) module in the Works manager. We
intend to remove this shared access by making all access to this data
base be via procedure calls on WMO, which will have sole access. To
this end, direct access to the data base by the WM to get a batch job
status (NSw: JOB) has been replaced by a call on WHMO by WM on the
(new) WMO-SHOWJOB procedure. Direct access to the data base by IBS
will be replaced by use of a WMO procedure, WMO-ENTERJOB, to be
specified and implemented in the future.

The extensive modifications to WMO have allowed us to make its
programming style consistent with that used in the Works Manager and
File Package. Its use of the Works Manager utilities is also consistent
with the other components, and its leogging and timeout behaviour is
identical.

\

e L e

18

Some able characteristics of the current wM0O - particularly those
not suggested by Appendix b - are as follows:

o)

o}

WMO is responsible for both processing the Job Queue
File and handling WMO procedure calls. These two tasks are
handled by distinct instances of wMO in any given NOw system.

(1) There is exactly one instance of WMO processing the job
queues. A standard locking discipline guarantees
that precisely one such instance exists. This instance
executes the job steps necessary to process a
batch job, and initiates all procedure calls
to external processes (WM, BJP, FP). It never receives
generically addressed MSU messapes.

(2) There are zero or more instances of WMU which receive
generically addressed MSGC messages, and hanale all
currently defined wMO procedures. These instances
never execute job steps or initiate external procedure
calls. thus, these irstance(s) provide external access
to the data base.

A primitive retry mechanism exists. wMO will retry an
external procedure call indefinitely when it fails due to
network or remote host crash. It will retry a failed
external procedure call a maximum of three times it the
failure is due to resource problems, e.g. no disk space.

Status reports generated by AMO for display by wh (NSk: JUB)
have been made more informative; all information supplied
by BJP is reported.

The maximum number of jobs in the job queue file is currently
64. This may be increased when needed, but requires
re-compilation and reloading of WMO.

The WMQ cycle number may be set manually by the WMO utility
(WMOUTL), but does not automatically increment with each

cold start. "Cold Start" in this version occurs only when a new
new job queue file is created.

— —

T o o 1k 1

19

3.2.2 TENEX/TOPS20 TBH Components

The TENEX/TOPS20 TBH is the most advanced of the three TBHs. All
components (MSG, Foreman, and File Package) are substantially complete
and tested. All components are transportable between TENEX and TOPS20.

3.2.2.1 MSC

The MSG specification was produced in January, 1976. It was
revised in December, 1976 - primarily to resolve ambiguities in the
earlier document. It was extended in April, 1978 to allow for
support of multiple, concurrent NSW systems. The TENEX/TOPS-20 MSG
component implements the revised and extended specification with only
two exceptions (which are noted below).

The TENEX/TOPS-20 implementation of MSG is a single executable
module which will run under TENEX, TOPS-20 Version 1018, and TOPS-20
Release 3. In addition to the communication functions supported for
processes (and defined by the MSG-process interface pecification) the
TENEX/TOPS=-20 implementation includes a powerful process monitoring
and debugging facility, and comprehensive performance monitoring
software.

The TENEX/TOPS-20 1implementation does not perform MSG-MSG
authentication. Message sequenceing and stream marking are not
implemented (however the underlying software structure exists to
support both).

The current implementation was extended to support new
component initiation features required to support TOPS20 TBH components.
In addition, a recent modification to MSG supports rapid timeout of
attempts to contact remote hosts where an MSGC is not up, or which are
themselves down. This markedly reduces the wait time imposed on a
user who has attempted to use an unavailable resource.

The implementation has also been modified to enhance
its performance, based on extensive performance measurements completed
this year. Changes include elimination of network connections for
local message traffic, data re-structuring, reduction of calls
on expensive JSYSES, and improved strategies for memory allocation.

20

3.2.2.2 Foreman

The current TENEX/TOPS-20 Foreman (Version 1521) implemeuts
all scenario functions defined by thie interim NS« reliability plan in
its most recent revision (March 1, 1977). The fForeman only supports
tools which run in encapsulated mode. It does not yet support the
direct use of NSW functions by any class of tools. It currently
supports approximately twenty TENEX and five TOPS20 tools in this
encapsulated mode. Some of these tools have been.extensively testead
and used within NSW; others have merely been superficially exercised.

The latest release can operate on both TENEX and IUPS-ZU
Release 3 confipgurations. There is a single .SAV file which uetects
at runtime the configuration type and modifies its behavior
accordingly. This newest release has now had adequate field testing
on the TOPS-20 machines. Not all TENEX WSW tools are available on
TOPS-20 and those that are have not been tested to the same degree as
their TENEX counter parts.

The current Foreman implementation handles the problem of
storing "saved" tool workspaces through the temporary means of
utilizing the workspaces themselves. A permanent facility to hanule
workspace management 1is already designed anc implementation is
pending.

The TENEX/TOPS20 Foreman has been extensively modified as a result
of the extensive performance measurements made in early 1978 and
reported in BBN report Lo. 3847, "A Performance Investigation of the
National Software wWorks System". Performance enhancement has been
currently limited to reducing resource consumption by the Foreman
€e.8. by minimizing use of expenive JSYSes, pre-allocating
workspace directories, etc. Future work will acdress alternative
system support configurations, and altered patterns of NSw communications.

————

21

3.2.2.3 File Package

The TENEX/TOPSZQ File Package is now functionally complete. The
task of writing Intermediate Language encode/decode for non=TENEX binary
finished files is now complete, and has been tested with the CCN/300 File
package for several representative binary file types. The current
File package version has the following characteristics.

o All specified File Package procedures are implemented
and tested for local, family, and non-family network
transfers., Unspecified procedures to support the obsolete
IP mechanisms in WMO have been expunged.

0o The Intermediate Language (IL) encode/decode package has been
re-structured for greater etfficiency and maintainability.
Encode/decode has been partitioned into three classes - text
files, sequenced test files, and binary files; there is an
encode and a decode module for each class, totalling
six., Code size has increased, but both efficiency and code
comprehensibility have been greatly enhanced. The interface
between the (BCPL) calling routines and the (MACRO10/20)
service routines has been simplified. Implementation of binary
file encode/decode is complete, and has been extensively tested
both against itself (i.e. against a remote TENEX simulating
a non-TENEX host), and against the CCN/360 File Package.

We have confirmed correct transmission of CMSIM ob ject
files from CCN/360 to TENEX/TOPS20.

o Performance enhancements have been implemented based on the
results of BBN's performance investigation as reported in
BBN report No. 3847, "A Performance Investigation of the
National Software Works System", DRAFT VERSIUN, July 1978
by Richard E. Schantz, We have minimized the use
of expensive JSYSes, notably the CNDIR (ccnnect
to directory) JSYS (average cost 220 ms per
call). We have done so by specifying that the File Package
must be able to create/read/delete files in its own filespace
and Foreman workspaces without connecting to them, and letting
it stay connected to its LOGIN directory. This has had
no practical effect on the operation of NSW, beyond requiring
that these directories be accessible from the system LOGIN
directory. These enhancements hae resulted in a CPU usage
reduction of up to 60% for delivery of a file from the
Foreman workspace.

22

RS T DA es

o The File Package is completely transportable between TLNEX
and TOPSZ20, requiring no modifications or patches. The
simple transportability is based on the use of the Global
Tailoring File for filespace name, logging inforumation, anc
the use of the JSYS encapsulation packapes now included in the
Wworks Manaper utilities. (See aAppencix ().

o The logging of messages sent/received via MoG is under
control of a switch in the (Global tailoring File (as in
WM, WMOC and CHKPTR). Wwhen logging is disabled, CPU usaye
for typical FP calls is reduced 25% - 40%, For comparison,
the FP retrieval calls analyzed in BLN report No. 30847,
"A Performance Investigation of the National Software
Wworks System", DRAFT VURSION, July 1478 by Kichard ct. Schantz,.
which averaged about 2.9 ms, can be reduced to as low as
0.7 ms with logging disabled.

The File Package is written primarily in BCPL (approximately
] 6.9k statements including utilities.) The IL encode/decode package
3 is written in Macro-10 and consists of approximately 1.7K instructions.

:
]
!

3.2.3 IBM 360 TEBH Components

The IBM 360 TBH is the second most advanced host. MSG and
the File Package are substantially complete. The Batch Job Package is
debugped and available. The weakest component is the Foreman which
implements only a small subset of the specification.

A new overlay mechanism which supports overlaying of exclusive
segments has been constructed and installed in the File Package, Foreman,
and Batch Job Package. This mechanism was required to allow these
components to fit in available real core, and to allow for incremental
increases in code size.

3.2.3.1 MSG

The IBM 360 MSG component implements substantially all of the
revised MSG specification. It does not yet implement the April, 1978
extension. The features of the current version are:

o Flow control is implemented for both sides.

o The present TENEX limitation of 2048 bytes per message
is larger than CCN can handle reliably with its current
allocation of resources to the NCP region. Therefore,
CCN's MSG is being configured with a maximum inter-MSG
message size of 1024 bytes.

An M3G process can be materialized automatically in

either TSO or batch. The IBM 360 MSG requires that a
process specifically "materialize" itself with a systen
call to the central MSG. Included in this materialization
call is an event signal which will be signalled to
perform the "termination signal" function; however,

at present MSG-central never signals this event.

No mechanism exists to allow a process which is

restarting after it crashed (while MSG-central stayed

up) to resume its earlier instance number.

Both Sequencing and Stream Marking have been implemented.

MSG now includes the ability to automatically start a
process uader TSO when MSG initializes itself after a
system crash.

Authentication is implemented in a manner which does not
match the current specifications. The most important
difference is that an ICP is required to the CCN
authentication socket.

binary direct connections may use any byte size, but byte
sizes smaller than 8 bits are likely to lead to problems
in determining the actual length of the message.

R N O T Ry T~

23:1

It has been decided to provide for a manifold of
coexisting NSW systems on the same AKPANET hosts., This
requires that a host support multiple M5G's, using
different contact sockets. The 360 MSG was implemented
to allow both a "production" and a "test" MSG to
coexists, using different contact sockets.

It is planned to modify MSG to allow more than two
different MSG's to coexist; this modification is not

as trivial as it was once believed to be.

The current process interface for direct connections
blocks internally, so that the process does not
receive control from an alarm until all direct
connection I/0 completes. The direct-connection
interface must be changed to be non-blocking.

Now optimizes the number of idle server processes maintained

based on predicted system load.

24

3.2.3.2 Foreman

The IBM 360 Foreman provides only a subset of the features
defined in the specification, as only features required to support the
DISPLAY tool are implemented. Specifically:

o The 360 Foreman supports encapsulated tools only; in
particular, there is no Foreman-tool interface.

tncapsulation does not extend to the file system.
Therefore, NSW files can be fetched only

before the tool starts. Files cannot be delivered, as this
feature is not required by DISPLAY. This is

accomplished by the Foreman interpreting a control stream
which it receives in the "filename-list" field of the
FM=BEGINTOOL command. A tool cannot dynamically select an
NSW file.

The only tool-control command implemented is F4-BEGINTOOL;
FM=STARTTOOL and FM-STOPTOOL are not implemented. Any
non-zero value for Entvec is interpreted as 1, i.e, it
starts the tool at the beginning.

There is no Local Name Dictionary (LND), and hence no
saving of LND's. FM-0OK is not implemented. No LKD cleanup
process is started automatically after a system crash.
FM-REBEGINTOOL is currently implemented as another name for
FM-BEGINTOOL. Otherwise, tool starting and stopping follow
the interim reliability scenarios.

SRR TSI Ry e

<o s Enenpa P

3.2.3.3 File Package

The IBM 360 File Package implements substantially all of the
revised specification. A few features have either not been implemented
or have been incorrectly implemented. Specifically:

o All format effectors and record control tokens of IL
are implemented. However, the variable formal effectors
HT, VT, LF, and FF, whose interpretations are definec
for each file by the GFD are not fully tested with the
Tenex File Package. !

o The IBM 360 File Package never arms itself for alarms, and
it never sends an alarm, If an error condition is found
during data transfer, the ILM 360 File Package will
immediately close the connection (rather than send an alarm, |
as called for in the specifications). The File Package
has no mechanism tor reporting the status of a
transfer operation.

o The full Error Descripters are not supplied by the File
Package, due to PL/PCP restrictions. 1In particular:

- The list of debug reports is always empty.

- Only one error can be reported, the first
one detected.

- The values of the fault class and fault
number fields have not been properly
correlated with other File Packape
implementations.

- The implementation of the Smithsonian
Astronomical Date Standard is untested.

. -3

o A format for family copies of files which cannot be
described in IL has not been defined or implenented
for the IBM 3060 family. MHence, all net transmissions,
regardless of family, use IL.

0 A local data set can be accessed by the File Packape only if
it exists within a directory in the NSw directory=group
(i.e., having the NSW charge number). Since there is
no mechanism to "connect" to a non=Now directory, the
password parameter 18 ignored.

¢ L reblocking is not supported; a request to senu an
IL=encoded file with a transmission block size smaller
than the IL blocksize in which it 18 recorded on disk
b may fail. This i8 not expected to be a problem, since
3 File Package transmission block/sizes are expected to be
: established by gentleman's agreement and not varied.

-
k- o Binary I.L. encode/decode has now been tested and debugged
% with the TENEX/TOPS20 File Package.

i 0 Only byte size 8 i8 supported for data transter.

5 ~
A

RN BRI 3 5 i S I3 W1 54 0 W W0 St~ s e X

R

26

3.2.3.4 Batch Job Package

The initial implementation of the CCN/360 Batch Job Package
is complete, and was released as a component of the candidate user
NSW system on November 16, 1978. This implementation completely
supports all BJP procedures specified in the revised Batch Job Package
specification included as Appendix B to this report. This implementation
has been extensively tested with the corresponding WMO version released
on the same date, and has no known outstanding deficiencies. There
are currently seven batch tools installed in NSw which may be run
by WMO-BJP. Only the FORTRAN tool has been extensively tested and
is known to run and produce good output., This testing deficiency
is largely due to the circumstance that the personnel responsible
for testing WMO-BJP are too unfamiliar with the cther tools to create
test input for them.

"‘;

Vi e

S— R ——

o R e

3.2.4 MULTICS TBH Components

The MULTICS TBH remains the weakest part of Now. The components
were implemented to comply only superficially with the specifications,
The TBH components have been analyzed to a procedure Level,
and a preliminary conformance study has been written. LEnoupgh provlers
have been fixed to justify the re-inclusion ot MULTICS in the user
system, with an expanded tool Kit.

3.2.4.1 MSG
MSG is a relatively stable MULTICS component. Its bigrest

problem is its dependence on the unsupported TASKING software.
Unsupported items in the specification, as documented on Jetober 3, 197

do not appear to compromise the usability of the MULTICS Tol software = many

remain unimplemented in other (HH systems,

Configuration control has been improved by creating a contact
socket tadble so that MULTICS MSG can contact remote Nuw MSG's at the
correct socket numbers.

3.2.4,2 Foreman

The Foreman contains the greatest number of unimplermented
items, and is the source of most problems on the MULTICS TBH. The
implementation suffers from the fact that it was ifmplementeu to
support tools written specifically for NSw = 1.e¢. tools that use
NSW tool primitives = and only later extended to support tool
encapsulation. In general, encapsulation can now be done, but the
quality fo the encapsulation of each individuual tool depends directly
on the amount of work put into each encapsulation,

Specific improvenments in the current implementation are:

0 Many small bugs eliminated,

o Tool termination works essentially as specified.

0 Alarm processing has been improved.

0 More tools are encapsulated more reliably.

3.6.4,3 File Packape

The File Package, like MSG, is a fairly reliable component.
It conforms fairly closely to the specification, and supports tile
encodement into Intermediate Language about as well as the other
ToH File Packages. Binary file transfer to non=MULTICH hosts 18 not
supported, but is not required by any currently installed tools.

kil

T PR

28

3.2.5 Front End

The COMPASS NSW Front End is not much different functionally then
it was a year ago, since no major rewritings or addition of functions

has been undertaken. It is, however, both faster and sturdier than it
L3ed to be:

Faster -- The FE program now handles (most of) its idle time by
interrupt mechanisms rather than timed waits; hence it no longer
consumes any CPU time between operations, and the CPU-time cost of waiting
periods during operations has been cut in half.

A N

Sturdier -- Anomalous conditions, especially in communications
protocols, are detected more reliably and more discriminating responses
are made. All known bugs have been corrected.

Several subtle accomodations have had to be made to the TUPS-20
operating system; but these have turned out to have no effect in the
TENEX operating system, so that identical object-code files run on the
two systems. Maintaining compatibility in this way means, of course,
that no advantage has yet been taken of several of the advanced
features offered by the newer TOPS-20,

%
{
i
: 3
§
i
:
i

By

29

Documentation:

The "external specs" of the FE are in reasonably good shape:

o

It

(2)

(3)

RGN Do 3 AR 1%

The FE MSG Interface document, originally issued in
November 1977, has been corrected and updated, and
reissued in August 1978, It describes the format and
content of all MSG messapes sent or received by the FL.

The "user interface" document -- the NLW User's Kelerence
manual -- has been extended and partially rewritten, and
was issued in November 1978 to describe the commanuds and
operations available to the user in the NSW version 3.1
release.

Shortcomings:

is still possible for the FE process to "hang" if its

conversational partner -- Works Manager or Foreman -- accepts an MNSG
message but then fails to reply. Without a moderately extensive
rewriting of the programs, we are faced with the following

choice in this circumstance:

(1) Abort the FE process, which leaves the user's Node

Records in a blocked state so that he cannot log in
again;

Stop walting for the reply and return to NSW command
level: this appears to work for non-responsive
Foremen, although the timeoul has been set at 30
minutes; for works Manaper operations, this
alternative leads to an out-of-synch situation from
which the user cannot recover, if the belated reply
does eventually arrive,

Wait indefinitely for the reply, which is what we do
now.

The program can still be made smaller and more efficient,
and the input-editing facilities need to be completed.

30

3.3 NSW Performance

During the reported period a number of steps were taken to improve
the overall performance of NSw. Three major avenues of approach were
vaken: v

1. Memory use was monitored.

2. TENEX was monitored while running NSW in order to collect
statistics on the gross use by NSW components of TENEX resources
such as CPU time, JSYS monitor calls, and pager faults.

3. Detailed statistics were gathered on Works Manager CPU usage.

Memory use was monitored in two different ways. First, a memory
monitoring tool called PAM was developed, and included in many NSW
components. This tool, when activated, generates a map of exactly which
virtual memory pages were accessed at least once between any two

7 designated points in the execution of a program. This gives an accurate
: picture of the total number of memory pages that would be required to

b perform some NSW operation with no page faults. Because the result of
using PAM is a map of exactly which pages were accessed, it is also
possible to subdivide memory use into code and data accesses. From this
it is possible to predict what the memory requirements would be for an
NSW with a larger number of concurrent processes all of which shared
code pages but each of which had its own local memory area.

PAM was able to show which pages were accessed at least once during
an operation, but was unable to show how many times each page was
accessed. Thus the figures obtained are doubtless larger than the true
working Set for NSW, in that pages are counted which may have been
accessed only once or twice in an entire operation. In order to get a
lower bound on NSW Working Set size, NSW was run on a metered version of
TENEX and figures were obtained on the Working Set size that TENEX
alloted to each NSW process. These figures represent a lower bound on
the true Working Set, in that the figures also showed clearly that the
TENEX configuration on which the tests were made had insufficient memory
to run NSW without excessive paging. Unfortunately it is difficult to
extrapolate from these figures just what the Working Set would be on a
TENEX with adequate memory.

sl S S

S

i

During the reported period LON made a number of tests of overall
system resource use by H5W. The results of these tests are described in
great detail in

BBN Keport No. 3847

A performance Investigation of the
National Software Works System
DRAFT VERSION

July 1678

Richard E. Schantz

In addition to the Working Set estimates already discussed, these tests
showed that certain NSW processes were expendiny a pgreat deal of tine
making JSYS calls to the operating system. As a result several Low
components, the File Package in particular, were altered tc interact
with the monitor more efficiently. This resulted in a substantial
increase in File Package performance. These iuprovements are discussed
in more detail in section 3.2.2.3 of this document.

These measurements of overall NSW component performance clearly
showed that the Works Manager was consuming a large amount of CPU time,
but gave no clue as to exactly where the time was being spent. To get a
better picture of the problem a new performance vool for bCPL programs
was developed: PFSTAT. PFSTAT takes samples of wall clock time, CPU
time, and pager time at selected subroutine call and return points. lue
result is a detailed picture of what major subroutines were called and
how much time each took to run. Wwhen PFSTAT was applied to the Works
Manager it showed quite clearly that the major probler was that the
Works Manaper was using the powerful but slow Information Ketrieval
System to store all of its tables, including those tables which were
accessed on every call. Accordingly, a new database management systen
called the Works Manager Table Facility was developed to hold the most
active Works Manager tables, leaving the Information Ketrieval System to
handle only the NSW File Catalogue for which it was originally acesigned.
As a result, the CPU time required by the Works Manager was reduced by a
factor of 4. The Works Manager Table Facility is described in Appencix
A of this document.

o

32

4, Future lirections
4,1 Overview

As noted in section 2.3, we are now in phase four of NSw
development, The areas of greatest concern are improving reliability
and performance. Substantial results in the area of performance
improvement should begin to be visible in the user NSw system by
October, 1978. Major effort on phase four whould be over by mid 1979,

The next phase of NSW development should be creation of a
production NSW system. This system should exhibit the basic
functionality already developed, as well as the robustness and
responsiveness now being implemented. In addition, NSW needs to have
the packaging, support, documentation, and capabilities of a finished
production system. Phase five of NSW development will concentrate on
providing these features. We expect to begin phase five in Uctober,
1978 by beginning the expansion of the RADC TOPS-20 NSW to support
the activities of NSW implementors. The first specific improvements
scheduled are the installation and testing of tools needed by the
implementors and the addition of an Arpanet mail facility. More
details about specific features can be found in section 4.2.

In addition to program improvement, phase five will include
the establishement of the administrative structure needed to support
NEW users, manage the system configuration, operate systems, determine
the priority of bug fixes and new features, prepare and distribute
documentation, etc.

4,2 Components

In the following subsections we describe the tasks to be
performed to complete phase four of NSW development and move into phase
five.

4.2.1 Core System
4,2.1.1. Works Manager

Considerable effort must still be devoted to completion of
phase four of Works Manager development. A number of measurements of
dorks Manager performance have been made and analyzed. Some
improvements have already been made, and a substantial improvement is
expected upon completion of the in-core Works Manager Table Facility
(see section 3.2.1.1). More performance optimization is possible,
and more effort should be devoted to measurement, analyses, and
implementations. Current effc.%s at modeling should also be continued.

33

In addition, certain portions of the full scale NSEW
reliability plan should be implemented. While portions of that plan
treated distributed data base synchronization, other parts dealt with
issues of process and network failure and recovery. These other
parts should be implemented. In particular, the try-retry mechanisn
and timing signals are needed. Moreover, a facility for archiving
and restoring NSW files and data bases should be designed and
implemented.

All of these performance and reliability improvements could
be completed in 1979, thereby concluding phase four of [iSW
development. Phase five, which is concerned with "productizing" L3W
should begin for the Works Manager in Uctober, 1478. while the Works
Manager is substantially complete, there are a number of extensions
which should be made. These enhanced capabilities include:

0 Arpanet mail interface - The procedures to support mail
systems (e.g., Hermes) should be designed and implemented.

o Configuration management procedures - As noted in section
3.1, manual configuration management has already begun, As
more NSW development work is done using N3W, it will be
possible to automate configuration management.

o Direct file access - Use access and read access: Add two
new kinds of NOW file access. Use access means that a user
has undisputed rights to an NSWw file. When he references
the file he is given the NSW file copy - not a private copy.
Any alterations he makes are immediately reflected in the
file. Read access allows a user to read the actual NSW
file copy - not a private copy. Thus it is suitable for
data base files.

o Tool kits - When a user runs a kit of several tools on one
host, the workspace should be left unchanged between each
tool. Thus, intermediate files can be passed from tool to
tool without delivery to NSW tfile space. bBoth of these
features would greatly enhance and optimize the use of
local tools.

o Version numbers - Design and implement a file version
numbering facility. This facility must be rich enough to
support configuration management within Sw.

o History file - Implement the Works Manager routines to
record information on the iistory File. Design and implement
‘at least some interesting management/accounting routines
which access this file,

o Full file attributes - At present only the filename portion
of the complete NSW filename can be used for retrieval.
Also, the use of file attributes by tools is only permitted
for the Global File Descriptor. The implementation of
file attributes should be completed.

o Tool name extensions - The original concept of complete tool
host transparency has proven unworkable. Thus, the notion
of tool name should be extended to allow (explicit or
implicit) host selection. By using the same mechanism as
is used for files, the entire file lock system can also be
used for tools.

o System status commands - The NSW user needs commands
to interrogate system status and configuration:
What tools are available? Which resources are up?
what is the system load?

This list of WM extensions by no means exhausts the list of possible
capabilities. These extensions could be scheduled for implementation
in 1979; other features will undoubtedly be suggested as NSW
implementors begin to use NSW for their own development efforts.

IR A s RO Mt

Wenptoe

32

4.2.1.2 Works Manager Operator

Very little needs to be done tc complete phase four of Works
Manager Operator development. The mechanisu used for batch job
submission has proven to be reliable in the face of works Mapager,
network, and batch host failure. Various detail improvements are
required, but these will not consume much effort. Moreover,
performance of the Works Manager Uperator has not been a problen.,
since it operates in background mode. The elapsed time for its
operation is only a miniscule fraction of total batch job execution
time. Some effort should be devoted tc careflully measuring and
reducing CPU utilization because of the possible effect on
interactive NSW components, but this is not a high priority task.
Documentation of the Works Manager Uperator should
be completed in the near future.

In phase five, it will be necessary to extend the functicnal
capabilities of the Works manager Operator. Such extensions include:

o Background file motion - The delays perceived by the user
when files must be transferred or reforvatted can be
significantly reduced by performing such actions in
background mode.

o Job chaining - A desirable extension is to allow multiple
batch tools to be run in sequence. Such a sequence should
not be limited to just one batch host.

o Device I/0 - A variant of background file motion is tc have
WwMC control input and output from devices local to a user.

o Support of small (or non-liSa) batch hosts - Some hosts may
be too small to support a batch Job Package. Also, some
hosts may be desirable as batch hosts but may not have the
required SW components (MSG, File Package). The Works
Manager Uperator should be extended tc use existing Arpanet
protocols (FTP, RJE) to submit batch jobs to such hosts.

36

4.2.2 TENEX/TUPS-20 TuH
4.2.2.1 MSG

Very little additional effort is required for TENEX/TOPS-20
M3G. There are still some outstanding MSG design issues:

o DUetails of MSG-MSG authentication - The general mechanism is
as specified in the MSGC design document of December, 1976.
tHlowever, the details of the ARPANET protocol exchanges are
being re-examined.

o Maximum message size - The maximum message size is specified
to be 05536 bytes (2%*10)., MNo implementation will accept
messaged that large. At present there is informal agreement
to limit message size to at most 2048 bytes.

o Process creation - This issue was skirted in the original
specification. However, a satisfactory solution must be
found which balances the dynamic cost of process
initialization and the static cost of maintaining unused
ready-to-run processes.

o OUptimization techniques - Compound operations like "send
s then receive" should be added, and some MSG code could
L be included inside those processes run under MSG to reduce
context switching.

o Reliability techniques - Allow for multiple hosts to be
considered as recipients of generically addressed
mnessages, so that the system can function better in the
presence of "downed" hosts. The NSW Fault Logger is an
example of a process which could make good use of such
a feature.

Once these design issues are resolved, TENEX/TOPS-20 ¥MSG must be
modified to incorporate them. In addition, recent performance
measurements have suggested a number of improvements which should be
implemented.

L §

4,2.2.2 Foreman

Completion of phase four for the TENEX/TOPS-20 Foreman
involves two tasks. The first is the integration of the relialility
mechansims described in the full scale NSW reliability plan - in
particular, the try-retry mechanisn and timinp signals. The second
task is improving Foreman performance with respect to CPU utilization
and paging requirements. A number of such improvements have been
Sugpested by the measurements and analysis already done, In
addition, documentation of the Foreman must be produced., This
documentation should be complete by February, 19.7Y,

Although the TENEX/TOPS-20 btoreman substantially implenents
the specification, there are a number of additional capabilities which
should be added. Some of these capabdilities are implied by the
specification, and some are additional. These capabilities 1nclude:

o Permanent intepration of the 10P5-20 mountable
structures interface

o Implementation of the solution to the saved LIl
Wworkspace managenent problem

o Coordinated Works Manager/toreman protocol design
and implementation to have conmon data base items
reflect local resource managerent decisions

o Implementation of tool-specific encapsulated tool
interfaces to handle tool peculiarities and
improve performance

o UDirect tool interface to NSW functions - i.e.,
non-encapsulated tool intertace

o Design and implementation of a Foreman modified
for on-line tool debugging

o Design and implementation of Foreman extensions
for tool kits,

o Incorporation of some of the file package's functionality
in order to optimize file fetching and delivery operations.

S AL o IR, 51y At KR P

f File Package
NEX/TOPS-20 File Package is essentially
tation of IL encode/decode for binary
Complete performance measurement and analysis must be done.
gested some changes which should halve
Some

ary measurements have sSug
Additional optimization should be performed.
1d also be extended to the

lization.
concepts of the reliability plan cou

ickage. The other major task to be completed in phase four is
pion of File Package documentation.

:Functlonally. the TE
, including implemen

the capability which snould be added is
The baud rate of such

In phase five,
t file transfers.
¢ restart and backup

ation of cross-ne
improved and automati
e transmission errors should be designed and

‘ers should be
res in case of fil

yented.

38

4,2.2.3 File Package

Functionally, the TENEX/TOPS-20 File Package is essentially
complete, including implementation of IL encode/decode for binary
files. Complete performance measurement and analysis must be done.
Preliminary measurements have suggested some changes which should halve
CPU utilization. Additional optimization should be performed. Some
of the concepts of the reliability plan could also be extended to the
File Package. The other major task to be completed in phase four is
production of File Package documentation.

In phase five, the capability which should be added is
optimization of cross-net file transfers. The baud rate of such
transfers should be improved and automatic restart and backup

procedures in case of file transmission errors should be designed and
implemented.

ik

TR

vy ST a7

TG

S S N —————————————— A SEE

39

4,2.3 IBM 360 TBH
A1l IBM 360 components need to be documented.
4,2,3.1 MSG

The IDBM 360 MSG should have the deficiencies mentioned in
section 3.2.3.1 repaired. In addition performance should be measurecd
and improved. As the MS5G desipgn issues nentioned in section 4,2,2.1
are resolved, the IBM 300 M3G should be modified to reflect those
resolutions.

e —

40

4,2.3.2 Foreman

The IBM 360 Foreman implements only a small subset of the
Foreman specification. To the extent that there is user interest in
interactive tools on IBM 300 hosts, the Foreman should be extended to
implement the entire specification.

4.2.3.3 File Package

The IBM 300 File Package is essentially compiete. A few minor
tasks remain to be done (see section 3.2.3.3), and these should be
completed. Performance measurement, analysis, and improvement should
be done. Optimization of cross-net file transfers should be done in
conjunction with the TENEX/TOPS-20 File Package.
4.2.3.4 DBatch Job Package

No further effort on this component seems necessary.

e A st T AT AP S T 4T O AN PR

4.,2.4 MULTICS TBH

As noted in section 3.2.4, the components of the MULTICS TLH
have been baselined. It is now apparent that considerable
effort must be devoted to making the Foreman implement the
specification. MSG and the File Package implementations are operating
according to specification. All MULTICS components need to be
documented.

42

4.2.5 Front End

Functionally, the TENEX/TOPS-20 Front End is essentially
complete. It has also been completely instrumented. Measurements
have been taken and analyzed. While some level of ad hoc performance
improvement is possible, the current Front End, which started as only
a debugging tool, must be completely restructured in order to obtain
a satisfactory level of performance. The Front End is implemented as
a multi-fork process. Almost all of these multiple forks can be

; collapsed into a single fork. This will decrease both CPU
| utilization and space requirements. Front End documentation should
also be completed.

An additional path toward optimizing Front End performance is
to split the Front End into the "switcher" and "parser" functions. A
document describing the functionality of the split was produced
t in July, 1978. Since this split is orthogonal to the current fork
3 structure, the reduction of the number of forks should be completed
before considering the implementation of the split Front End.

N R AN T

ATRERIN . BRI S R 2

43

Parts of the full scale NSa reliability plan also must be
implemented in the TENEX/TOPS-20 Front End = in particular, the
try/retry mechanisn and timing signals. With the completion of these
performance and reliability tasks, phase four of Front tnd developuent
will be finished.

There are several Front End enhancements which should be
accomplished as part of phase five of NSW development. These
enhancements include:

o Optimization of local tool use - Some advantage should
be taken when the Front End and task are on the same
host. The split Front End is an .pproach to this
optimization.

0o Macro facility = An NOW macro facility should be designed
and implemented. This would permit users tc execute a
number of system/tool commands with a single command.

It should be able to execute either online or in
background mode.

o User profiler - Use of the user profile to tailor
terminal handling should be cdesigned andg implementea.

0 Access to text files - Currently the Front tndg can't access
NSW.files ~ if the user wishes a file listed, an editor
or display tool must be invoked. The Front End shoulu be
able to list the file itself, and additionally should
be able to take commands from a file to iuplerment the
"Runfile capability discussed later (see 4,.3.3).

4.3 Functional Testing

4,3.1., History

COMPASS has been responsible since mid 1977 for functional
testing of NSW as outlined in "National Software Works Test Plan",
May 9, 1977, published by RADC/ISCP. Since that date, COMPASS has
run a manual functional test script on each version of the HSW system
which was a candidate for release as a new user system.

The initial version of this script was restricted to the
level of test specified in RADC/ISCP Test Plan - to determine if NSW
components functioned as specified in a friendly environment.

Testing was limited to ensuring that all components in the test
configuration (including remote TBH's) responded correctly to correct
user input, and little effort was made to test the system in the face
of incorrect input or errors in the system configuration. NSW
systems tested to only this level tended to behave erratically.
Therefore the functional test script was soon extended with a number
of ad hoc tests of NSW's capacity to cope with user and configuration
errors. This is the level of testing to which the candidate user
system released on November 16, 1978 was subjected.

COMPASS has been mandated to develop and apply a more carefully
designed and rigorous level of functional testing to future WNSW system
releases. The remainder of this section describes the direction
for this future testing.

L T —

45

4.3.2. Functional tests - content

We define "functional testing" as follows: to determine whether
a set of NSw components offered as a new systew release meet the
following requirements:

(1) Can be correctly configured as an operational NSW syster,
with all core and TBii components in a correct initial
state for operation.

(2) All functions specified to be present in the release perforu
as expected for correct input, and all components in the
configuration function as specified for coriect 1input.

(3) All error detection and reporting functions work as
expected for representative incorrect (user) input.
All components report and recover from user induced
errors as specified.

(4) The interim reliability scenarios perforu as specified.

(5) The system recovers from configuration failures
(e.g. TBH crashes) to the extent specified and expected
for the release.

This testing includes complete tests for the delivery system
for tools at each TBH - Foreman, File Package, Batch Job Package,
etc - but does not cover acceptance of any tools.

The test scripts will be structured intoc a series of
levels; the first level will test the least functionaity and the
least complex core of the configuration. Each succeediny level will
test more functionality and/or more of the system configuration.

4o

The general contents of the scripts will be as follows:

Level C: Set up the complete system configuration, and
verify that all components are in a proper initial
executive and communications state.

Level 1: Test core system: all components local on Works
Works Manager host.

(a) Test all possible NSW command paths with correct
input in the following order:

i. LOGIN, MOVE, CHANGE password, LOGOUT.

11. Project management tools: nodes, assign
rights, etc.

iii. ALTER comamnd - SCOPE manipulation.

iv. File commanas = NtT, RENAME, COPY, DELETL,
SEMAPHORE. Local file transfers only.

v. Enter a batch jodb. (Processing deferred).

vi. Use a local interactive tool. Test
slewing, multiple tools, RESUME.

All recognition and completion features of the
Front End are to be tested.

(b) Recapitulate relevant sections of (a), with
representative errors on input. The error
detection and reporting facilities of the local
components are to be tested in the following order:

i. Front End
ii. Works Manager
iii. File Package
iv. Foreman

(c) Where appropriate in (a) and (b), the operation
of the Checkpointer is to be monitored, and message
and error logging is to be monitored.

A

a7

A

Level &: Test the distributecd system: at least one instance
of each TBH family to be involved in the configuration.

(a) File transfer tests

i. Test family transfers, where available.
Currently limited to TENEX/TUPSZ20 hosts
due to lack of multiple host resources.

ii. Test non-family transfers. At least

one text file transfer back and forth

between each family pair in configuration,
| and one round-robin transfer in a chain including
| all families. Multiply translated files
must be identical under Intermediate Language
semantic specification. At least one
binary file transfer of each definec type.

(b) TBH test

i. Execute a batch job at each BTLH. Monitor
performance of aworks Manager Uperator
and Batch Job processor for each job.

ii. Execute one interactive tool at each TuLH.
Level of test identical to 1 (a) vi.

(c) Recapitulate (a) and (b) introducing ;
representative errors in uscr input.

Level 3: .Test interim reliability scenarios. Induce each
error condition covered by interim reliability

2 plan, and monitor all components involved for

correct behavior.

(a) Initial test will be for the core syster only,
particularly to test correct behavior of
Wworks Manager.

(b) Test of Foreman cecpability for each TLbH. Induce
only those failures which test the Foreman's
role in the reliability scenarios.

Level 4: Test system response to incucec configuration
failures. Eeyond checking response to "crashed"
I'BH (NSW taken down), the content of this test
level is to be specified.

Ty

.
¢
o

48

4,3.3. Functicnal tests - methodology

It will be necessary to automate these tests as much as
possidtle both to avoid expending excessive professional staff time
on them, ancd to make the tests reliably repeatable. COMPASS
has investigated three classes of tools wnich can assist this
iytomation effort:

1. Run file facilities external to NSW:

TENEX RUNFIL
TOPS2C TAKE
TLLNET take.input.from.file

2. Run file facilities within LOW.
Front End RUNFILE command
3. Production (syntactic rule) systems

RITA

1, Run file facilities external to NSW

The tools listed are all basically similar. Each has the
advantage of being farmiliar, tested and straightforward. All
lack a sufficiently sophisticated means of synchronizing
their input to the processes they control with what is in fact
happening. The synchrony problerm limits these tools to situations
in which no slewing between TELNET connections is done. This
excludes any testing of NSW tools, and makes changing TELNET conversational
partners to monitor configuration status changing unreliable.

. Run file facilities within NSW

Provision of a RUNFILE command has one outstanding advantage:
the Front End is always aware of the identity of the user's conversational
partner-NSWw commana processor, HELP call, or tool - and is thus
perfectly placed tc control the synchronization of command file with the
actual behavior of WSW. An additional advantage 1s that we can add
desired features to this facility as needed, but must accept
the others as they are. The disadvantages are that this facility
has to be designed, implemented and tested; and that it can only
automate the user input portions of the test scripts.

3. Production systems - KHITA

RITA has the advantage that it can handle both user input
and configuration management with a sufficiently rich rule set.
Cur studies indicate that the development of such a rule set would
be a demranding job. A more significant problem is that TENEX
HITA is likely to consume excessive CPU recources to run
a rule set as complex as that needed by HSW.

Proposed Methodology

R e o TSR

We propose that a mixture of ranual testing and the use of
two of the tools described above be used to run the functional tests.
The mix would be as follows:

1. Use RITA to set up and initialize the ilSa configuration
for each level test, and confirm that the initialization

is correct.

2. Use NSw RUNFILL to automate all user input to test Lev=:ls
1, 2, and 3. The KUNFILE facility will have some cr all of
the following features:

(i). Ability to interrupt

(ii). A synchronization schene

(iii). HELP from attached user if synchronization
failure occurs

(iv). A PAUSE feature

(v). A macro feature - string and/or file name
binding at run time.

(vi). A "learning" fecture which will allow
the Front End tc do most of the work of
turning a manual script intc a command file
(speculative).

3. Use manual scripts for much of level 3 testing and most of
level 4 testing. Probe system status and nonitor component
operation as requirecd during Level 1, 2, and 3 testing.

50

“

4.4 Miscellaneous

There are additional tasks to be undertaken which do not fall
within the scope of a single component. One major effort, the creation
of an administrative structure for NSW, was mentioned in section 4.1,
In this section we list some additional efforts:

o Help facility - an online help mechanism for HSW users
should be designed and implemented. This should probably
look like a tool within NSW.

o LUistributed system debugger - It should be possible to
debug a distributed system like HSW from within KSW.
An appropriate debugger should be designed and
implemented. This will almost certainly require
changes to the Works Manager and Foreman components,
and possibly to MSG also.

o Fault logger - An NSW wide component for logging all
error messages should be designed and implemented.

0o Automated testing - The functional and stress/regression
testing of NSW test and user systems should be
automated.

¢ Management tools - Tools for manipulating the project
tree are available in rudimentary form. These should
be improved, and additional tools for accessinyg the
History file, report generation, etc. designed and
implemented.

o OCperatoers tools - A tool kit for the user system
operator to at least partially automate data base
cleanup, system starting, etc. should be designed
and impleriented.

o Tool installation - Install, test, and document more NSW
tools. In particular, install a tool kit adequate for
NSW implementors.

A AR

R

L) L e —————

J 1

bibliography

NSW Protocol Committee., MSG: The Interprocess Communications Facility
for the National Scftware Works (Preliminary). Massachusetts
Computer Associates, Inc. CALD=7001=-2011, and bolt, Beranek
and Newman, Inc. 3237, January 23, 1976,

Muntz, C.A., and Cashman, P.M. File Package: Tune File iancling
Facility for the National Software Works (Preliminary).
Massachusetts Computer Associates, Inc. CADD=70Q¢=cull,
February 20, 1976.

Schantz, R.E., and Millstein, R.E. The torerman: Providing the Prograr
Execution Environment for the National Software wWorks
(Preliminary). Bolt, Beranek and Newman, Inc. 3265, anc
Massachusetts Computer Associates, Inc. CADU=700U=CYIT1,

March 31, 1976.

Geller, D.P. NSW User's Guide (Preliminary). Massachusetlts Computer
Associates, Inc. CADD=7605-3111, May 31, 197€.

Geller, D.P. NSW Manager's Guide (Preliminary). Massachusetts Computer
Associates, Inc. CADD=7005-3112, May 31, 1476,

warshall, S. NSW: Tools for Management Support (a final report).
Massachusetts Computer Associates, Inc. CALD=70U7=C111,
July 1, 1976.

NSW Protocol Committee. MSG: The Interprocess Conmmunication tacility
for the National Software works (1st revision). Massachusetts
Computer Associates, Inc., CADD=7612-2411, anc Lolt, beranec
and Newman, Inc. 3237, December 24, 1470,

Cashman, P.M., and Faneuf, R.A., and suntz, C.A. File Package:
The File Handling Facility for the iational Software ~orks
(1st revision). Massachusett: Computer Associates, Inc.
CADD=7612-2711, December 27, 1%76.

Schantz, R.E., and Millstein, R.E. The Foreman: Providing the Prosran
Execution knvironment for the hational Software works (1st
revision)., Bolt, Beranek and uewman, Inc. 3442, and
Massachusetts Computer Associates, Inc. CADLD=T770V1=0111,
January 1, 1977.

Shapiro, R.M., and Millstein, R.E. NSw Keliability Flan.
Massachusetts Computer Associates, Inc. CA=7701=1411,
January 14, 1977,

Millstein, R.E., and Shapiro, R.M. Interim NSW Reliability rlan.
Massachusetts Computer Associates, Inc. CA=7701=2111,
January 2V, 1977.

Bearisto, C.B. The Front End: User's Interface to thec iational
Software Wworks. Massachusetts Computer Associates, Inc.
CA=7701=2112, January 21, 1677,

52

Millstein, R.E., and Shapiro, R.M. Interim NSW Reliability Plan
(1st revision). Massachusetts Computer Associates, Inc.
CA=7701-2111, Febdruary 8, 1977.

Millstein, K.E., and Schantz, R.E. NSW Tool Builder's Guide
(1st revision). Massachusetts Computer Associates, Inc.
CADD-7702-1811, and EBolt, Beranek and Newman, lnc. 3308,
February 18, 1977.

Millstein, R.E., and Shapiro, R.M. Interim NSW Reliability Plan
(nd revision). Massachusetts Computer Associates, Inc.
CA-7701-2111, March 1, 1977.

Shapiro, R.M., and Millstein, K.E. NS« Reliability Plan (1st revision).

Massachusetts Computer Associates, Inc. CA-7701-1411,
June 10, 1477.

duerrieri, M., Schaffner, S., and Sluizer, S. Works Manager Program
Maintenance Manual. Massachusetts Computer Associates, Inc.
CADD=7705=-2711, September 27, 1$77.

Guerrieri, M., Schaffrer, S., and Sluizer, S. Works Manager Subsysten

Specification. Massachusetts Computer Associates, Inc.
CADD=-7709=-2712, September 27, 1977.

Schaffner, S. Works Manager Dbatabase Specification. Massachusetts
Computer Associates, Inc. CADD-770Yy=-2713, September 27, 1977.

bearisto, D. System/Subsystem Specification; WMO & IBS Methodology;
WMO & IBS Documentation Program Maintenance Manual; wMO & IBS
Systew Locumentation. Massaclhiusetts Computer Associates, Inc.
CALD-7709-2714, September 27, 1977.

Geller, D.P., and Sattley, K. NSw User's KReference Manual System
Version 2.1. Massachusetts Computer Associates, Inc.
CALD-7710-2611, October 26, 1977.

Schaffner, S., Sluizer, S., and Guerrieri, M. NOW Utilities Program
Maintenance !Manual. Massachusetts Computer Associates, Inc.
CALD=7804-0111, April 1, 1978.

Sluizer, S., Guerrieri, M., and Schaffner, S. Information Retrieval
Systen Program Maintenance Manual. Massachusetts Computer
Associates, Inc. CADD-7804-0112, April 1, 1987.

e S

53
ulossary
NSW National Scftware Works
WM Works Manager
aMC Works Manager COperator
TBH Tool Bearing ilost
MSG NSWw Interprocess Message Systen
FM Foreman
FP File Package

FE Front End

e & i el - —_—

m-m-:muy T — 0 I

Appendix A A-1
Works Manager lable Facility

As of November 1977, NSW had progressed to the point where it was
sufficiently robust and complete to allow serious use. liowever, it was
very slow, even with only one or two users lopgged in. NMore than two
users was clearly out of the question,

It was felt that part of the problen was due to the difficulty of
implenenting an interprocess protocol such as M5G on top of the standard
TENEX monitor. In addition, it was known that the physical memory on
the host machine was inadequate to support a minimal NSW working set.

It was also clear, however, that a great deal of the problem was simply
that it too% a lot of CPU processing to perform any iUSW user conuwand.
In particular, the works Manager required a lot of CPU time.

Some relatively simple changes were made in 1977 that speeced
up the Works Manager by a factor of two. As a result, Works Manager CPU
usage per procedure call was now comparable to that of other LSW
components, Unlike the File Package, the Foreman, and «!0O, however, the
works Manager participates in almost every interaction with the user.
Thus while the Works Manager was not always the worst CPU time burner
per call, it was certainly the worst per user session due to the large
nuiiber of calls made on it.

To give some perspective on the problewr, figure 1 shows the amount
of CPU time consumed by the 1977 Works Manager during the indicated
procedurc calls.

&3 CPU fINE RLQUIRED TO PERFORM WORKS NMANAGEK PRUCEDURE CALLS
MARCH 1978

Procedure CPU time (seconds)

LOGIN 1.
RUNTOOL 2.
2.

PUT

A-3
By March of 1978 it became possible for us to consider making a
concertecd attack on the problem of Works Manager performance. Not only
was there manpower available to work on the problem but also PFSTAT, our
performance measuring tool for LCPL programs, had been developed to the
point where it was adequate to the task of pinpointing the sources of
the probler.

We rade a number of tests of various Works Manager procedures, and
a pattern quickly became apparent: the Works Manager was spending most
of its time making calls on the Information Ketrieval System. This
confirned what we had already suspected, since earlier tests on the
Information Ketrieval System had shown that table access calls were so
expensive by thewrselves that there would be little CPU time left in most
Jorks Manager routines to assign to any other cause.

The Information Ketrieval System itself will neec some substantial
cptimizaticn sometime in the future. The primary problem in March of
1978, however, was simply that the Information Ketrieval System was
originally designecd tc support only the NSW File Catalogue, and the File
Catalogue has substantially different charac' :ristics from other Works
Manager tables. Figure 2 contrasts the differences between the SW File
Catalogue and the other Works Manager Tables.

e it a0 el

A-b CHARACTERISTICS OF NSW FILE CATALOGUE

1. Very large number of items to store.
2. Infrequent access to any one item.

3. Retrieval by keyword.

CHARACTERISTICS OF OTHLR WORKS MANAGER TASLLS

1. Small number of items =-- most items could fit in process virtugl
merory for a medium sized (100 node) iSw.

2. Frequent access to many itews.

3. Retrieval not only by keyword but also by parareter value,

sl .

RORESES VTR PO

The NSW File Catalogue contains a potentially large number of 3
items. Generally, no individual item in this database will be accessed
very often. ltem retrieval is by keyword: "Give me all files whose
namnes start with COMPASS.SLUIZER and which also contain WALDO". Because
people are relatively inventive, there is expected to be a large numver

of keywords.

Y S0 g T 0

el

However, the other Works Manager tables fit quite a different
pattern. They contain a relatively small number of items. In fact, for
an NSW of moderate size, say 100 user nodes, all these tables could fit
into part of a process virtual memory. Most of the items in these
P tables will be accessed frequently. Finally, the name structure of
g these tables is different. Most items have simple names of fixed

T structure. Furthermore, item name elements must at times be used as
parameter values instead of as keywords. For example, the Works Manaper
may wish to retrieve all Leleted File Entries that have timestamps which
are at least 20 minutes old.

Al o i 2 oo

A6

It is felt that the best overal) course of action was to design
and builqd a facility eéxpressly for Works Manager TalLles -- the Works
Manager Table facility, This Package would be tailored Specifically to
the particular characteristjcs of Works Manager Tables., First, all
retrieval information would be stored online, j,e. in Process virtyal
memory, Second, as many table entry bodies as would fit would also be
online., Third, retrieval would be done on a fixed name form and the

We were forced, however, to take account of two implementation
problenms: First, there was at best one Person available for at most 6
months to design, implement. and test any new facility, Second, there
were even more Stringent limits on the manpower available to change
higher-level Parts of the Works Manager in order to use the new
facility. Thuys the new interface coulg not be radically different from
the old one.

or course, if these restrictions hadg Proven unworkable then the
Projected schedule could have been alterea. Happily. it was possible to
create a reasonable design that would still allow an implementation
within the time limit,

TS Y

if
&

The time schedule was met in the following manner: First, the A-7

design was deliberately made quite standard. The algorithms ancd data
structures used were ones which were known to be simple, proven, and
flexible. NSW overall may be a research project, but the Works Manager
Table Facility certainly was not. Second, once the design was complete
the implermentation was done to cost. Where time did not permit an
optimal implementation of some part of the design, simpler data
structures and algorithms were employed which could easily be replaced
later. For example:

1. Exclusive locks were used for concurrency control. HNow, an
exclusive lock provides excessive protection; for example, it
prevents two separate processes from reading the same element
simultaneously. However, the way the database is structured
there should be few collisions.

2. Singly-threaded lists and linear scans were used instead of more
complex structures and faster scans. As the figures will show
later, the Works Manager Table Facility that resulted was still
adequately fast.

3. Fixed allocations were used. For example, whenever an online
database is set up the maximum number of table entry slots
needed must be preallocated. This wastes space in the database.
Code could be added later which could dynamically reconfigure a
table header whenever the need arose, allowing preallocated
table header space to be made much smaller.

Finally, the time schedule was met by deferring implementation of
parts of the design not needed immediately, in particular overflow
storage and checkpointing. These parts were implemented later, in
version 2.

In evaluating these implementation shortcuts, we must remember that
the goal is a fast Works Manager, not necessarily a fast Table Facility.
For example, we could create a version 3 with dynamic reconfiguration of
table entries in order to save table space. However we could use the
same time instead to make changes to other parts of the works Manager.
These other changes might well save a great deal more table space for
about the same coding effort.

A-8

Version 1 of the works Manager Table Facility was first

used in a Works Manager in August of 1978. At the highest logical level,
it implements a table structure similar to the one already supperted Ly
the Information Ketrieval System. The major differences between the two
systems are confined to lower logical levels.

The cdatabase consists of a number of wWorks Manager Tables.
Each table consists of a set of table entries, for example Active
User Entries or hode tntries. A table entry is the basic unit of
transaction in the works Manager Table Facility. Arn eatry is composed
of:

1. An entry name consisting of a list of peremeter values.

2. A body, which at this level of detail is nothing more tuan a
hleoeckx of arbitrary data.

3« A set of external locks. These lociis 2re used by @orks Manager
instances to coordinate their use of table entries. They are
not used by the Works Manager Tabtle Facility itself.

Parameters in an entry rame can be character strings, inteyers, or
timestamps. In the Information Retrieval Syste:, all paranmcters were
character strings. The shape of an entry name, that is, the nutber of
parameters ancd the type of each, varies frcecin table to table but is the
same for all entries in a given tatle. In the Information hetrieval
System, on the other hand, different entries in the same table could
have different numbers of parameters. In both systems, hcwever, the
entry nanes are the scle means of choosing one entry over another in a
retrieval.

The online database is a single block of cdata, kept in & single
TERKEX file. All processes that access this database map a portion
of their virtual merory down ontc this file. Thus each process secs
the cdatatase as a part of its own memory.

This single block of uemory is divided intc variable-sized
blocks. Each bleocxk is kept track of by a two word header which is
separate frou the block. There is a singly-threaded list of free blocks
arranged in order of increasing address in nmermory. wshen the database
is first created, this list contains one single, large block. a5 memory
is used and then later released, the list will grow. 7Tc satisfy & request
for memory, the list is scanned to find the smallest block that is
large enough. Generally, the requisite memory is then split off fromn the
block unless the block is only slightly larger to begin with. The address
of the block is returned, not the address of the header that defines it.

Blocks which are in use are threaded ontc another list. This list
is necessary in order to find the block header when the block is later
freed, as higher-level routines know only the audress of the bloeck, not
the address of the header.

EE— - a1
2 S T S — — - - ‘ .

o o e

Cne of the more significant differences between the Works Manager e
Table Facility and the Information Ketrieval System is that in the Works
Mrnapger Tabtle Facility the information which defines a table is
centralized, whereas in the Information Ketrieval System this
information is distributed. In the online database each table is
represented by a data structure called a table header. The header
consists of a fixed part which contains several items, including a
definition of entry name shapes and the starting address and length of a
block of entry slots. All slots are the same size. Some slots are
marked as not in use; the rest define table entries. A slot in use
contains the following information:

1. The value for each parameter in the entry name.
2. The entry external locks.
3. A pointer to the body.

The original design was based on the idea that a Works Manager
process would be given the address of an entry body, providing Works
Manager processes with the most direct access possible to table entries.
liowever, implementers of Works Manager procedures felt that this was too
dangerous. All access is now through copies, just as it was in the
Information Retrieval System. This requires an extra block transfer
operation for most table accesses. This consuies on the order of an
extra millisecond of CPU time, and is not really a substantial
contribtution to system overhead.

. g

A-10

Version 1 of the Works Manager Table Facility was first used in &
works “Manaper sometirme in July of 1978. This initial version put the
Active User Entries and the User Icdentification tntries online and left
all other tables in the Information Ketrieval Systerm databases. ThLese
tuwo tables cre referenced in almost every works Manager Frocedure call.
Figure 3 shows clearly that even this small cliange produced a
cubstantial improvement. This more-or-less served as an acceptance test
of the overall concept, and soon thereafter all other Works Manager
tables except the NSW File Catalogue were put online. The final
figures, given in the right hand column, were just about what we had
hcped tc see, given our PFSTAT runs of 1977. As you can see,
routines which do not access the NSW File Uysten take abtout one third of
a second, while routines which do access the file system take about 1
second. We have used PFSTAT to analyze the difference between utl and
PUT which, on the surface at least, should take aliost exactly the sanme
amount of time. We have found a minor probler in the interface between
the Information Ketrieval System ancd the aorks Manager. When this’
problen is corrected, we expect that GET and PUT will both take about
800 milliseconds.

o o AN B R =

3
3
%
i
§
2

GO |Vt v e AR B e it

o Gla R | o

PR

SV m————.

Version ' of the works Manager Table Facility was released A-11

for system testing late in 1978. Version 2, released for testing in
Jetober of 1978, implemented those features of the design which vere
deferred, namely checkpointing and overflow handling. Specifically,

the new features in version 2 are:

: i 1, Overflow handling == when space is needed online,

: s least-recently-used table bodies are dumped fnto an Information

3 £ fetrieval System database. The, item number of the offline body

' L rather than the item name is stored in the entry slot, to avolid
i an expensive keyword scarch when the item is)ater accessed.

s e —

E
fﬁ J. Checkpointing == A checkpoint lock was added to ensure that
48 while the Checkpointer 1is copying the database, no process can
3 g be writing into that database.
i & 3. Dynamic allocation of menory block headers -- This reduces space

wastage and removes an arbitrary restriction on the degree Lo
which memory can be broken inte separate blocks.

4, Various improvements to increase robustness and case of use, for
example, database internal version numbers and support for

VUSTAT.

<

!

.
R e

A-12

These performance improvements were sufficient to solve the
immediate probdlem., Eventually, however, another optimization puss will
be needed. 1t would be prenature to say much about what cptimizations
should be performed next, as we haven't had¢ a chance to think all that
deeply about the problem yet. The first step would probably be to use
PESTAT to generate quantitative models of present systew perforvance.
From this we could predict the overall effect of any specific change
before we actually made that change.

To give some feel for the current status of the works Manager ana
to show how we might go about waking another optimization pass, let us
exanine figure 4, which shows some PFSTAT output trow a call ou the
works Manager Procedure WM-LCGIN,

e 0 o et e v

L ——

5,
o

£ A-13 i
3‘ no. type 1vl caller PC called PC realtm runtm dlreal delrun dlpage |
o3 45 call 2 WMMAIN 11466 M3PRMS 325027 56478 505 0 0 0 ;
g 46 retn 2 WMMAIN 11466 M3PRMS 325027 178312 918 121834 13 P ;
o 55 merg 2 WMMAIN 11652 wMLOGS 37527 176729 goe 1417 44-18 506 |
& 56 call 3 WMLOGS 37577 !SIREP 316067 179730 963 1 1 0 |

57 retn 3 WMLOGS 37577 BBIRCP 316067 179746 979 16 10 0

58 call 3 WMLOGS 37655 OPNUTS 251731 179954 983 208 4y 6

59 retn 3 WMLOGS 37655 OPNUTS 251731 181176 1015 1222 32 80

§0 call 3 WMLOGS 40236 PASHZN 342055 181207 1018 31 3 1

61 retn 3 WMLOGS 40236 PASHZN 342055 181209 1020 2 2 0

62 call 3 WMLOGS 40426 DRTUTS 274556 181349 1023 140 3 17
g 63 retn 3 AMLOGS HOU26 DRTUTS 274556 181608 1029 259 6 o
3 6l call 3 WMLOGS NONST DRTUTS 2745%6 181610 1031 2 2 0 |
B 65 retn 3 WMLOGS 40457 DRTUTS 274556 181616 1037 0 0 0

66 call 3 WMLOGS 40504 DRTUTS 274556 181618 1039 2 2 0

67 retn 3 WMLOGS 40504 DRTUTS 274556 181624 1045 6 0 0

&8 call 3 WMLOGS 40531 DRTUTS 274556 181626 1047 2 2 0

54 retn 3 WMLOGS 40531 DRTUTS 274556 181630 1051 4 4 0

70 call 3 WMLOGS 40556 DRTUTS 2745506 181632 1053 2 2 U

71 retn 3 WMLOGS 40556 DRTUTS 274556 181639 1060 7 i f 0

72 call 3 AMLOGS 40603 DRTUTS 274556 151641 1062 2 2 0

73 retn 3 WMLOGS 40603 DRTUTS 274556 181647 1068 6 (3 0

74 call 3 WMLOGS 40630 DRTUTS 274556 181649 1070 2 2 0

75 retn 3 WMLOGS 40630 DRTUTS 274556 181652 1073 3 3 0
“ 76 call 3 WMLOGS 40655 DRTUTS 274556 181654 1075 2 l 0
: 77 retn 3 WMLOGS 40655 DRTUTS 274556 181751 1159 97 84 0

78 call 3 WMLOGS H0702 DRTUTS 274556 181753 1161 2 2 0

79 retn 3 WMLOGS 40702 DRTUTS 274556 181756 1164 3 e U

30 call 3 WMLOGS 40726 DRTUTS 274057 181758 1166 2 2 0

81 retn 3 WMLOGS 40726 DRTUTS 274057 1817060 1168 2 2 0

32 call 3 WMLOGS BO751 DTBSBS 177621 181871 nmnm 11 3 5

83 retn 3 WMLOGS 40751 DTBSBS 177621 182122 1176 251 5 10

34 call 3 WMLOGS 40766 WMEUTS 254640 182124 1178 2 2 0

85 retn 3 WMLOGS 40766 WMEUTS 254640 182332 1191 208 13 10

86 call 3 WMLOGS 41016 DRTUTS 276304 182351 1193 16 2 1

37 retn 3 WMLOGS 41016 DRTUTS 276304 182353 1195 2 2 U

6 call 3 WMLOGS 41045 DRTUTS 274057 182355 1197 2 2 0

89 retn 3 WMLOGS 41045 DRTUTS 274057 182357 1199 2 2 0

50 call 3 WMLOGS 41071 OPNUTS 253330 182405 1202 48 3 3

51 retn 3 WMLOGS 41071 OPNUTS 253330 - 182629 1340 224 138 8

92 call 3 WMLOGS 41110 WMUTIL 73251 182675 1344 46 4 3

93 retn 3 WMLOGS 41110 WMUTIL 73251 182701 1366 50 22 10

94 call 3 WMLOGS 41117 BCPMCH 342625 182763 1368 2 2 0

95 retn 3 WMLOGS 41117 BCPMCH 342625 182849 1373 806 5 3

56 call 3 WNLOGS 41153 WMMAIN 11677 182851 1375 2 2 v

97 retn 3 WMLOGS 41153 WMMAIN 110677 185436 1434 2585 59 35

98 call 3 WMLOGS 41167 DRTUTS 276304 185541 143y 105 D) 14

49¢ retn 3 WMLOGS 41167 DRTUTS 276304 185543 Tam 2 2 0

100 retn 2 WMMAIN 11652 wMLOGS 37527 185544 1442 1 1 0

113 merg 2 WNMAIN 11466 M3PRMS 325027 1806150 1470 612 28=26 30

T

i:i[‘,c 3

R

A-14

A detailed description of how PFUTAT works is beyonc the scopc of
this document, but briefly PFSTAT manipulates the UCPL control stack 1in
order to take samples on selected subroutine calls and returns., It will
sample all calls doWn to scme specifieu level in the runtiwme call tree.
velow this level PFSTAT is disabled, so there is no overheau on
low=level calls. The global sampling level can be ianipulated locally
by specifying that certain calls are to be magnified cr pruned. In this
particular case, the global level is ¢ and the call from the aorks
Mangger mein program, WMMAIN, to the login subroutine has been flagged
for magnification. The listing shows real (or well clock) time, runtine
(or CPU time), and paging time, all in milliseconds. The full listing
for this run is quite a bit larger. we have usec PrOTAT's forumgttec dump
facility to print only a portion of that listiuyg. In acdition, we have
merged uninteresting sequences of nodes. This merger is done by the
formatter, after the samples are taken.

For example, consider samples 76 anc 77 of figure 3, OSample
76 was taken when the Works Manager called a subroutine. The call uas
from address 40555 which is in mocule W#MLUGS, In fact, we know that it is
in the WN-LOGIN routine. we coulc use the HBCPL detugger, BLUT, to print
out the line of BCPL code that made the call. The subroutine being
called is at address 274556 in module CRTUTS. This subroutine turns
out to be a utility routine which copies tatle elements. Agalin, we
could exarine the subroutine with BLDT, given the address., Sample
76 was taken 141,654 seconds of real time after PFSTAT was enablec¢ and
the sampling began. ULy this time 1,075 scconcs of CPU time had been consuncc.
A real time of 181,054 seconds is <& williseconds of real time after saumple
75 was taken. During this interval, 2 milliseconus of CPJ time and v
milliseconds of paging time were coasumwed. In other words, tiis grocess
had complete use of the CPU during the interval and no pages had to de reac
in.

Sample 77 was taken wnhen this subroutine returnecd. Tie real tire
was 181.751 seconds, or 97 milliseconds later than the recal time et sample
76. By now, 1.159 seconds of CPU time had been changed to this process,
which was 84 milliseconds more than had been chaaged at sawple (6. o
additional paging time was changed, indicating that the entire
subroutine was already in real nmemory.

we have found PrSTAT to give highly repeatatble results, which are
not noticeably affected by system load, anount of real systew merory, or
type of schieduler. The only real problem is that the sawpling procedure
itself takes, on the average, just under 2 milliseconds. This average
appears to be stable. Unfortunately, there is a jitter of 1 to &
milliseconcs between the tine the sanples are taken and the time TENEX
increments its internal tables. FPrSTAT stiould probably be wodified to
subtract sampling time from the figures. For the mowmecnt, liowever, the
reader must mentally subtract 2 milliseconds from each increuental
runtime. For merged samples, however, a multiple of & milliseconds must
‘be subtracted. For example, sample %5 1ls a meryer of Y samples, so &
milliseconds must be subtracted instead of 2.

A-15

Figure 4 shows a login call on the Works Manager. This is the
‘ latest werks Manager, which incorporates version 2 of the works Manager
i ¥ Table Facility. The results we saw previously were for version 1. As
; 3 sample 46 demonstrates, the Works Manager spends 11 milliseconds of CPU
' % time waiting for and then receiving the procedure call message. All the
times in figure 4 are for this fork only. The 11 williseconds is a bit
puzzling, as the only process which does anything significant during
this call is the MSG fork. In any case, the Woerks Manager then spends
B8 minus ¢ cor 20 milliseconds verifying that this is a valid procedure
call message and deciding to call the Login procedure in module WHNLOUGS
(sample 55). The Login routine then spends 14 milliseconds converting
the messape into internal representation and simultaneously verifying
that the messape has the correct form for a login request (sample 57).
Login next retrieves the node entry corresponding to the project and
node name given in the wessage, consuning 30 milliseconds in the process
(sample 59). It appears that a lot of this time is due to the very
simple and somewhat inefficient entry name matching algorithm in the
works Manager Table Facility. HNext, the Login routine builds an Active
User Entry by copying elements from the node entry. The only really
expensive operaticn here is 82 milliseconds to copy the list of tool
rights (sample 77). At sample 89, Login takes 11 milliseconcs to create
the new Active User btntry. Login then puts the updated node entry back
into the online database, consuming an alarming 1306 milliseconas in the
process (sample 91). Login then spends 20 milliseconds checking the
user Identification Lntry for messages (sample $3). Finally, Login
takes 57 milliseconds to format a reply message and send it (sample 47).
After Login returns to the Works Manager main program, the wain program
almost inmediately starts to wait for another procecuure call message
(sample 113).

i

In sunmary, Login took a total of 429 williseconds, or &4
milliseconds rmore than it did when it was tested in August of 1978 with
version 1 of the Works Manager Table Facility. A comparison with the
detailed timings for the version 1 test shows that in the new timings
the only significant differences were that copying the list of tool
rights took 37 more milliseconds and putting the node back took 43 more
milliseconds. The extra 37 milliseconds for the copy is easy to
explain; the node logped into when testing version 2 had about twice as
many tool rights as the cne used when testing version 1., The 43
milliseconds for updating the node was nuch more disturbing, so another
test run was made, this time requesting PFSTAT to magnify the call to
put the updated node away. Figure 5 shiows only that call.

. ”‘?g!ﬁf«_x-\c I 131 oy

- s . @ T T D GBI S gl

JU—————— RS2 SRR LR T L

no. type 1lvl caller PC called PC realtm runtm dlreal delrun dlpage
30 call 3 WMLOGS 41071 OPNUTS 253330 103796 1110 0 0 0
91 call 4 OPNUTS 253356 OLRUTS 261002 103798 112 2 2 Q
S2 retn 4 OPNUTS 253356 OLRUTS 261002 103648 1MM7 50 5 Q
93 call 4 OPNUTS 253466 MSKUTS 263533 103861 1120 13 3 1
94 retn 4 OPNUTS 253466 MSKUTS 263533 103863 1122 2 2 0
95 call 4 OPNUTS 253567 WMTUTS 270420 103881 112% 18 3 1
56 retn 4 OPNUTS 253567 WMTUTS 270420 104261 1249 380 124 4
97 call 4 OPNUTS 253636 ENTUTS 256557 104264 1251 3 2 0
98 retn 4 OPNUTS 253636 ENTUTS 256557 104278 12066 14 15 0
99 call 4 OPNUTS 253650 OLRUTS 261215 104280 1268 2 2 v
100 retn 4 OPNUTS 253650 OQLRUTS 261215 104281 1269 1 1 0
101 retn 3 WMLOGS 41071 OPNUTS 253330 104281 1269 0 0 0
B

% |

i

Fig. 4 i

4
K .l')';‘ifv.‘"l‘»'v‘,{,».—“::. AR
S S O et 0 TN D 0 Nk e, i

i

A-17

The subroutine calls shown in Figure 4 are all in WHMTPKG, a set of
routines which lie between the Works Manager top level routines on one
side and the Works Manager Table Facility and the Information hetrieval
System on the other side. The actual call to put the node entry away is
made by the subroutine called at sample 97. This call takes only 13
milliseconds. The expensive call is the one at sample 95, which
consumes 122 milliseconds. This is a call to a garbage collection
routine, and happens to be quite unnecessary. In other words, we have
found a performance bug in the Login routine. (This bug has since been
fixed.)

A brief explanation is in order of what this garbape collection is all
about. As far as the Works Manager Table Facility is concerned, a table
entry is just a block of arbitrary numbers. Actually, an entry body is
a data structure called a Dynamic Kelocatable Table. The use of the
word "table" here is unfortunate, and comes in part from the fact that
the Works Manager is implemented in layers. In any case, a dynamic
relocatable table, here a node entry, will grow in length if nonscalar
elements in it are replaced. The only way at present to retrieve the
space is to do a garbage collection, which consists of copying, element by
element, the entire data structure. This is what is taking 122
milliseconds. Here the garbage collect was totally useless, since the
only element changed was a scalar.

This also explains 37 of the 43 extra milliseconds that this
garbage collection took with version 2 compared to version 1. A garbvage
collect is a copy of all elements, including the list of tool rights. As
we saw, the longer list in the new node took 37 extra milliseconds to

copy.

-2

A-18

SUMMARY CF CPU TIME CONSUMED IK WMN=LOGIN

. A total of 429 williseconds was expended in all,

2.

3.

77 milliseconds, or 18% of the total, was spent retrieving table
entries.

LRR) milliseconds, or 26% of the total, was spent sending, receiving,
and decoding messages.

241 milliseconds, or 56% of the total, was Spent manipulating table
entries. Of this time, 122 milliseconds was due to a bug. Of the

recaining 119, at least 82 williseconds was due to the 1list of tool
rights.

Fig. 5

A-19
Figure 5 suumarizes what we now know about the Works Manager Login
call:

A total of 42y milliseconds of CPU time was consumed in all. Only
77 milliseconds, or 18% of the total, was spent retrieving tables. Thus
few of the improvements we suggested earlier for the Works Manager Table
Facility would have any noticeable effect, at least for a Login call.
The only potential problem is that we might get into trouble retrieving

3
S

nodes if there got to bYe a lot of them, so we should probably do
something about entry name searches before NSW grows too much larger.

3 !‘fg
%‘ Again, only 111 milliseconds or 26% of the total was spent sending,
£ receiving, and decoding MSGC messages. This is a relief, as some of the
% utility routines which hancdle MSC messages are large and look
& threatening. A whopping 241 milliseconds, or 50% of the total, was
B spent manipulating tatle entries. Almost half of this time is due to a
% bug, an unnecessary garbage collection. Furthermore, 069% of the remaining
§ 1"7 milliseconds was spent copying the list of tcol rights.
% Thus, if we got rid of the garbage collect and found some way to
3 get rid of the time spent copying the list of tool rights then Login
¥ would take about 225 milliseconds ==- just over half as much time as it
2 does now.
?i This is only an example of how we would go about planning for
5 further reductions in works Manager runtime. Before we actually do any
%» reducing, we should perform the same type of analysis on all major Works
i- Manager procedure calls. We should then use those results, plus the
§~ results of BDBR's system tests and Manni Chandi's higher level model, to
e plan which changes will be most cost-effective in terms of overall NSW
g performance.
B
5
2:
-

b 3 J“ |

i t

g T A P A T IO 2 B e

Appendix B B-1
Batch Job Package - External Specification

This document is written in the style of Appendix 1 of "The
Foreman: Providing the Program Execution Environment for the National
Software Works" by R. Schantz and R. Millstein, which is used herein
as a reference. It describes functions of the Batch Job Package
(which may be invoked by WMO) and a function of WMO (which may
optionally be invoked by BJP). All invocation messages are
generically addressed; requested replies on the other hand are
specifically addressed to the invoking process.

The Batch Job Package (BJP) on a Batch Tool Bearing Host
(BTBH) cooperates with Works Manager Operators (WMO's) to control the
execution of NSW batch jobs. Once an liSw user has submitted a job, it is
the responsibility of a WMO and BJP to execute the job and to produce
status reports as required.

WMO serves a role analogous to that of the Foreman in that
WMO keeps the Local Name Dictionary (LND) for the job and supervises
required file prestaging and delivery operations. BJP includes all
functions (exclusive of file transfer and translation) required at BTB8H
to accomplish batch job execution. Its conversational partners are the
WMO's through which jobs are submitted.

BJP's data base is concerned with the management of all NSW
jobs in progress at BTBH. Associated with each job is the generic process
address of the WMO which submitted it, and is therefore its
conversational partner with respect to that job throughout the
duration of the job. The following discussion relates to messages
for individual jobs and therefore is cast in terms of communication
between a single WMO and BJP. It is assumed that the process address
of the submitting WMO is recorded in BJP's data base, and is used for
addressing messages from BJP. Should any WMO disappear (because of
an error) an as yet unspecified restart sequence must be executed.

Job naming considerations

Each WMO maintains a queue of up to 256 jobs in progress.
When an NSW user submits a job, the WM to which the user is assigned
contacts a WMC with the job request. WMO assigns the job to an unused
location in the queue, an assignment which remains intact throughout
the stages of job execution.

Every time WMO is "“cold-started" all entries in its queue
are marked as free. All such cold starts are explicated
by maintaining a WMO cycle number which is initially 1 and incremented
(except that the successor to 16383 is 1) each time such a cold
start occurs. NSW's name for a job is a triple of indices:
the WMO host number, that WMO's cycle number, and the position within
that cycle's job queue. Every time WMO contacts BJP regarding an NSW job,
its NSW name is included in the message.

B-2

BJP may wish to create local names for iSw jobs. This optional
character string is returned by bJP when a job is acceptec. WMO will
retain this name in its job queue and supply it along with the
NSW name in messages relating to the job.

If BJP can supply cycle and number, local name is optional;
if it can supply local namne, cycle anc number are optional.
Complete information is preferred for error checking.

LJP must respond to a small number of messages from WMO,
and initiate a message of its own - as follows:

. WMC's initial contact with BJP is to reyuest allocation
of a workspace and assignment of local names for job
output files. Arguments include batch tool name,
cost estimate (in machine dependent units), priority,
and a list of size estimates for job output files.
Response includes the workspace name (WS, a character
string), a status indicating whether the job was acceptec
or rejected, and a list of local names assigned tc
output files.

. Once file pre-staging is complete, WMO will request cJP
to submit a given local file for batch execution.
The response is job status.

. BJP will notify WMO when a job is done. This message
includes time and charge information.

. WMO will request BJP tc delete a job.
BJP's response confirms the deletion and reports
any abnormal conditions.

. WHMO may inquire as toc the status of a job as well as
a Boolean which is true if the job is tc te
continued or false if it is to be cancelled. bJP's
response includes a user-oriented character string as well
as the job's status.

P AN NS £ 5 S = ot o

All job execution sequences begin with an allocation request: 3

BJP~ALLOCATEJOB (tool-id-list, accounting-list, tool-dependent-
parameter-list)
-> tool-igd-list, status-list, workspace-descriptor

where the parametric data are:

tool-id-list: LIST(ecycle-no, tool-instance-id, local-name)

cycle=-no:

index, with 0 denoting "unknown."
tool-instance-id:

integer, with 0 denoting "unknown."

local-name:
charstr; if length is O then is "unknown."

accounting~list:
see reference pages Al1-3 and Al-4,

tool-dependent-parameter-list: LIST(n-charstrs)

status-list: LIST(status-code, qcan-proceed, status-report)

status-code:
index =0-> not found

=1-> allocated
=2-> scheduled
=3=> running
z4=-> halted
=5~> deleted

qcan-proceed:

boolean =true -> can proceed
=false-> cancellation requested

status-report:

charstr; if length 0 then is null report

workspace~-descriptor:
see reference page A1-2

A i

B-4
Parameter usage

Tool=-id=-list:

Every message between WMO and BJP includes tool-id-list. This
applies to both invocations and replies. When WMO sends a
tool-id-list it always includes cycle-no and tool-instance-id, and
local-name once aMO learns of it. Most messages from BJP to WMO are
specific replies. The returned tool-id-list may include cycle-no and
tool-instance-id if desired; WMO will perform consistency checks if
they are returned. Should a local name be returned, then it will be
recorded and supplied to BJP in all subsequent messages from WwMO to
3JP. This name must be unique for that BJP. Local-names cannot
be reused by a 8JP. Different BJPs may use the same name.
Should BJP return the local-name once it has been recorded,
consistency checks will be made on it, as well.

All other parameters are as described in the reference
document, except status-list, which is straightforward.

All subsequent messages from BJP to WMO report on the state of a
particular job. EJP's response requirements seem to be as follows:
given a message atout a job, inform WMO of the new state of the job.
This yields a simple response algorithm for BJP, as BJP learns about
Jjob completion via polling or a message from BTBH's operating system;
and the required response is also a status report to WHMO.

BJP-QUERY (tool-id-list, gproceed)
-> tool-id-list, status-list, accounting-list

where the additional parameter is

gqproceed:
boolean =true-> can proceed
=false-> cancellation requested

T IO AT T BT e e e T

lote that this simplifies WMO processing, as Status is the 22

only variable of interest to it - the remainder of the message cata
is simply recorded. If Local-name is supplied, then Cycle=-no
and Job=-no are optional, ana vice-versa.

BJP-ENDJCB (tool-id-list)
-> tool-id-list, status-list, accounting-list

lote that this is not the same as LJPQUERY(-,F) since it is usea by
wMC after file delivery anc recording of final job charges is coumplete.

B-6
Functions implemented within WMO

WHO-JOBHALTED (tool-id-list, status-list, acounting-list)

This is the only function in WMO invoked by BJP. It
requests WMO to initiate job delivery operations. It is an optional
feature: alternatively, WMO can issue UJP=QUERY periodically
until it finds the status code corresponding to job halted.

If implemented, then either local-name or tool=instance~i¢ must
be supplied (unless BJP limits itself to a single NSw Job at any
given time). i

¥
i

AT

Uptional functions which can be implenented within any batch
Job Package

BJP=STARTJICL (Lool-id=-list, workspace-descripter, filenane)
=> tool=-id=-1ist, status-list, accounting-list

where the additional psrameter is filenanc:
sece reference page Al=2

This function is optional. The namec file is taken as the
Job control staterents for the given job. Alternatively, if lJpP's
file package can initiate job exccution when a file of a given gind
is created (such as (CF=<jobname>, DC=IR) namnes in CLC JCOPE
systers), BJP=-STARTJCYH need not be supported.

WwMO will be driven by a table taken from the tcol descriptor
to sequence the procedures which actually get invokea. Tais
allows supporting a variety of batch hosts; e.¢. = hosts where
filespace must be reserved anc those where it doesn't, and
hosts which do WMO=-JOBUALTED and those that don't.

s AR A AN

Appendix ¢ c-1
Transportability

We define transportability as follows: an iSw component/utility
is transportable if it can be copied from one host to another and be
inmediately executec with no patching or modification beyond naming
the transported executable file to suit the new systen's naming
conventions. This definiticn covers transport between both similar
(TEREX - TENEX, TOPSZC - TOPSZ20) and dissimilar (TENEX-TUPS20-TENEX)
systems.

All LSW components and utilities maintained by MCA hLad to be
mecdified te achieve transportability. we identified two classes of
problems to be solved: (1). Differences between TLNEX and TuPS20 at
the interface to the operating system, i.e. different behavior and/or
naming of JSYSes; (2). Tailoring - Configuration - specific data
built into components that had to be patched for each liSW system on
each NSW host, e.g. the IISW filespace name compiled intc the File
Package. The first probler we solved by encapsulating most JSYS
calls in three JSYS routine packages with system insensitive call
interfaces; we solved the second by providing a Global Tailoring File

which captures configuration information for each ISW system on each
host.

J5YS encapsulation

we encapsulated JSYSes by dividing the JS5YSes used throughout
our [iSW components into three groups, and providing three corresponding
paciages of BCPL routines to access the JSYSes indirectly. The groups
are:

(1). File handling, day/time, and error handling
JSYSes

(2). PMAP and related file mapping JSYSes packaged to do
page-oriented reading and writing to files.

(3). Utilities to access the AKRPANET system tables
maintained on both TENEX and TOPS20 hosts.

The call format for all the routines in these packages is
consistent and uniform; success or failure of each call is signaled in
a uniforr way, and a system-produced error message is returned whenever
available. Obtaining the latter typically requires two further JSYS
calls (GETER and ERSTR) which formerly had to be placed in line; thus
much of our code which calls the encapsulations has been reduced in size,
and is more readable. When required, checking for TENEX VS. TOPS20
is done at run time. The contents and characteristics of the
three encapsulation packages are:

ri s A i

c-2
1. Common JSYS package (JSYSUT in BCPPKG

JSYSes which have different names and arguments on 10X
and TOPS20, encapsulated so that arguments produce
results identical to execution on TENEX:

STDIR/RCDIR (directorySTring to directory number)
CNDIR/ACCES (connect to directory)
GTAD (get time and day. TOPS20 internal

time converted to TENEX)

ODTIM (output time. TENEX internal converted
to TOPS20 if required)

JSYSes with identical names, but requiring differing
defaults or argument formatting to execute identically on
TENEX and TOPSZ20.

GTJFN (Get JFN. TOPS20 specific code to
handle structure references)

PMAP (Map fork/file page. To handle
differences in unmapping)

DELDF (expunge directory. Different
argument sequence)

JSYSes with identical behavior on both systems:
Encapsulation provides consistent defaulting and
error handling.

OPENF (Open file)

-LOSF (Close file)

CLZEPF (Close fork's files)
RLJFN (kelease JFN)

DELF (Delete file)

SFPTR (Set file pointer)

T S

1 el v S v PRI > " s . ’ - " g

JFUS (JFN tc string)

C-3
RWANF (lename file)
SIZEF (Size of file)
BIN,BOUT (byte in, out)
SIN,SCUT (String in, out)

2. PHAP 1/0 package (PMPUTS in BCPPKG)

. A group of five routines which use the PMAP JSYS to do
page-at-a-time I/0 between a ft'ile and core wuewmory.
Encapsulates the difference beween TEuEX and TuPSZU Piib,
and isolates the user from the subtleties of using PuaP
to create file pages. The operations supported one:

Getting a file papge into core.
Putting a core page into a file.
Locating the next file page. .
Getting and modifying some parts
of a File Lescriptor Block.
3. Host tables package (HOSTUT)
« A group of routines which support the following activities:-
Une-time read of host tables into core.
heturn host (afpanet) nuaber given nane.

Return host name and nicknames given numter.

Return host operating systewm type given number.

These packages were thoroughly tested with several straightforward
test drivers; all NSw components were than laundered tc rewove direct
in-line JSYS calls., All utilities which did not require the Global
Tailoring File facility then became immediately transportatle.

C-4
Global Tailoring File Facility

This facility consists of the following elements:

(1) The global tailoring file, a fixed format ASCIIL
file encoded so as to be untypeable. This file must
exist in the LOGIN directory for each LSW system on
each NSW host; it contains the following entries:

NSw filespace name

WMO Job Queue File name

Checkpoint directory name

External process MSG call timeout value

Component logging flag

WMO sleep interval (between each gqueue in job queue file)

(2) A utrility (GLBTAL) which can create or list the contents
of this file, and replace individual entries.

(3) A package of utilities (GLBUTS in NSUPKG) which allow
components to read entries from the file).

(4) A set of descriptors for the file entries compiled into
GLBTAL and all accessors of the file.

Use of this facility requires the following discipline: The
Global Tailoring File must exist in each TENEX/TOPS20 NSw LUGIN
directory, and its format must be compatible with the compiled-in
descriptors for all accessors in that directory. keformatting the
file requires re-compilation, reloading and re-distribution of all accessors.
This has not proved burdensome .to date, as the file changes format
rarely.

In addition to providing configuration information (directory
and file names), the facility supports a crude facility for turning test
VS. user systems by allowing manipulation of parameters directly
related to performance (timeout values, inhibition of logging.

The components and utilities using this facility are: f

Works Manager

-

File Package

Works Manager Operator

e

Checkpointer

WMO Utility

MISSION
of
Rome Avr Development Center

RADC plans and executes research, development, test and
selected acquisition programs <in support of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within areas of technical competence
48 provdded to ESD Program Offices (POs) and other ESD
elements. The prineipal technical mission areas are
communications, electromagnetic guddance and control, sur-
vecllance of ground and aerospace obfects, intelligence data
collection and hand@ing, {nformation system technology,
d{onospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.,

